HDL Coder™
Getting Started Guide

7

MATLAB&SIMULINK

R2024a ¢ } MathWorkse



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Getting Started Guide
© COPYRIGHT 2012-2024 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023
September 2023
March 2024

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 3.0 (Release 2012a)

Revised for Version 3.1 (Release 2012b)
Revised for Version 3.2 (Release 2013a)
Revised for Version 3.3 (Release 2013b)
Revised for Version 3.4 (Release 2014a)
Revised for Version 3.5 (Release 2014b)
Revised for Version 3.6 (Release 2015a)
Revised for Version 3.7 (Release 2015b)

Rereleased for Version 3.6.1 (Release 2015aSP1)

Revised for Version 3.8 (Release 2016a)
Revised for Version 3.9 (Release 2016b)
Revised for Version 3.10 (Release 2017a)
Revised for Version 3.11 (Release 2017b)
Revised for Version 3.12 (Release 2018a)
Revised for Version 3.13 (Release 2018b)
Revised for Version 3.14 (Release 2019a)
Revised for Version 3.15 (Release 2019b)
Revised for Version 3.16 (Release 2020a)
Revised for Version 3.17 (Release 2020b)
Revised for Version 3.18 (Release 2021a)
Revised for Version 3.19 (Release 2021b)
Revised for Version 3.20 (Release 2022a)
Revised for Version 4.0 (Release 2022b)
Revised for Version 4.1 (Release R2023a)
Revised for Version 23.2 (R2023b)
Revised for Version 24.1 (R2024a)






Contents

About HDL Coder

HDL Coder Product Description ... ............................... 1-2
HDL Language Support and Supported Third-Party Tools and Hardware

.......................................................... 1-3

VHDL, Verilog, and SystemC Language Support .................... 1-3

Third-Party Synthesis Tools and Version Support . ................... 1-3

FPGA-in-the-Loop Hardware . ........... ... .. ... . .. 1-4

Generic ASIC/FPGA Hardware . ............iiiineeinneennn. 1-4

IP Core Generation Hardware ........... .. ... ..., 1-5

Simulink Real-Time FPGA 1/O: Speedgoat Target Computer ........... 1-6

Getting Started with HDL Coder

2|

Tool Setup .. ... .. . e 2-2
Synthesis Tool Path Setup . .......... .. .. . . . . ... 2-2

HDL Simulator Setup . ....... ... 2-3
Xilinx System Generator Setup for ModelSim Simulation ............. 2-4
Altera DSP Builder Setup . ......... ... 2-5
FPGA Simulation Library Setup . ....... ... .. .. . . . . 2-5
C/C++ Compiler Setup . ... e 2-5
Tutorials

3

Basic HDL Code Generation Workflow . ............................ 3-2
Develop MATLAB or Simulink Design . ........................... 3-2

Set Up HDL Coder Project .. ..... ... i, 3-2
Check HDL Compatibility with HDL Code Advisor ................... 3-2
Generate HDL Code .. ...ttt e e 3-2
Verify Generated HDL Code ............ ...t .. 3-3
Deploy Generated Code to Target Hardware ....................... 3-3
Optimize Design for Speedand Area .. ............ ... 3-3
Create HDL-Compatible Simulink Model .. ........................ 3-5
Use Blank DUT Template .. ............ .. .. 3-5
Choose Blocks from HDL Coder Library . ......................... 3-6
Develop Algorithm for DUT . ... ... . . ... 3-7



Create Test Bench forDesign . ... ....... .. ... .. ... ... . iin... 3-8
Simple Counter Model ........... ... ... 3-8
Simulate and Verify Design Functionality ......................... 3-9
Generate HDL Code from Simulink Model . ...................... 3-10
Generate HDL Code from Simulink Model ........................ 3-11
Model Templates for HDL Code Generation ...................... 3-11
Simple Counter Model . .......... ... . ... . . 3-11
Generate HDL COde . ...t 3-12
View HDL Code Generation Files ... ......... ..., 3-13
Inspect Generated HDL Code .. ........ ... ... 3-14
Validate HDL Behavior Using Validation Model .................... 3-17
Verify Generated HDL Code . ......... ... . i, 3-18
Verify Generated HDL Code from Simulink Model .................. 3-19
Whatisan HDL Test Bench? .. ........... .. .. ... .. .. . ... . ... 3-19
Simple Counter Model . ......... ... ... 3-19
Verification Methods ... ...... .. ... .. . . . . . 3-20
Generate HDLTestBench ........... ... . ... . . . . ... 3-20
View HDL Test Bench Files ... ...... .. ... i 3-21
Run Simulation and Verify Generated HDL Code ................... 3-22
Deploy Generated HDL Code on Target Device . ................... 3-22
HDL Code Generation and FPGA Synthesis from Simulink Model . . . .. 3-24
Simulink HDL Workflow Advisor . ..............ciiiiuiinnn... 3-24
Simple Counter Model .. ....... ... .. . i 3-24
SetUpToolPath . ... ... .. .. . . . . . . .. 3-25
Open the HDL Workflow Advisor . ............ ..., 3-25
Generate HDL Code .. ... ..ottt e 3-26
Perform FPGA Synthesis and Analysis . .......................... 3-27
Run Workflow at Command Line witha Script .................... 3-28
Generation of Clock Bundle Signals in HDL Coder . ................ 3-29
MATLAB Code and Clock Relationship . ......................... 3-29
Simulink Model and Clock Relationship ......................... 3-30
Get Started with MATLAB to HDL Workflow . ...................... 3-32
Basic HDL Code Generation and FPGA Synthesis from MATLAB ... ... 3-37
Generate HDL Code from MATLAB Code Using the Command Line
Interface ... ... ... . . 3-43
Generate SystemVerilog Code for a MATLAB Function .............. 3-46
Generate SystemVerilog Code for a Simulink Model ................ 3-48
Generating Modular HDL Code for Functions ..................... 3-50

vi Contents



About HDL Coder

* “HDL Coder Product Description” on page 1-2
+ “HDL Language Support and Supported Third-Party Tools and Hardware” on page 1-3



1 About HDL Coder

HDL Coder Product Description

Generate Verilog, SystemVerilog, and VHDL code for FPGA and ASIC designs

HDL Coder enables high-level design for FPGAs, SoCs, and ASICs by generating portable,
synthesizable Verilog®, SystemVerilog, and VHDL® code from MATLAB® functions, Simulink® models,
and Stateflow® charts. You can use the generated HDL code for FPGA programming, ASIC
prototyping, and production design.

HDL Coder includes a workflow advisor that automates prototyping generated code on Xilinx®,
Intel®, and Microchip boards and generates IP cores for ASIC and FPGA workflows. You can optimize
for speed and area, highlight critical paths, and generate resource utilization estimates before
synthesis. HDL Coder provides traceability between Simulink models and the generated Verilog,
SystemVerilog, and VHDL code, enabling code verification for high-integrity applications adhering to
DO-254 and other standards.

1-2



HDL Language Support and Supported Third-Party Tools and Hardware

HDL Language Support and Supported Third-Party Tools and
Hardware

In this section...

“VHDL, Verilog, and SystemC Language Support” on page 1-3
“Third-Party Synthesis Tools and Version Support” on page 1-3
“FPGA-in-the-Loop Hardware” on page 1-4

“Generic ASIC/FPGA Hardware” on page 1-4

“IP Core Generation Hardware” on page 1-5

“ Simulink Real-Time FPGA I/O: Speedgoat Target Computer” on page 1-6

VHDL, Verilog, and SystemC Language Support

The generated HDL code complies with the following standards:

¢ VHDL-1993 (IEEE® 1076-1993)
* Verilog-2001 (IEEE 1364-2001)
* SystemVerilog-2005 (IEEE 1800-2005)
* SystemC 2.3 (IEEE 1666-2011)

Third-Party Synthesis Tools and Version Support

The HDL Workflow Advisor is tested with the following third-party FPGA synthesis tools:

« Intel Quartus® Prime Standard 22.1.1
* Intel Quartus Pro 22.4

+ Xilinx Vivado® Design Suite 2023.1

* Microchip Libero® SoC 2022.1

* Xilinx ISE 14.7

+ Cadence® Stratus HLS 21.2

* Cadence Genus 19.16

When you use a synthesis tool that has been tested with the HDL Workflow Advisor and start the
workflow, the Advisor generates a list of devices that are supported with that tool. If you use a third-
party synthesis tool that is not tested with HDL Workflow Advisor, the Advisor does not update the
device list to reflect the FPGA devices that you can use for that tool.

For example, the HDL Workflow Advisor has been tested with Intel Quartus Prime Standard and Intel
Quartus Pro. If you use a tool has not been tested with the Advisor, such as Intel Quartus Prime Lite,
the FPGA device list does not get updated in the Workflow Advisor.

To use third-party synthesis tools with HDL Coder, a supported synthesis tool must be installed, and

the synthesis tool executable must be on the system path. For details, see “Tool Setup” on page 2-
2.

1-3



1 About HDL Coder

FPGA-in-the-Loop Hardware

The FPGAs supported for FPGA-in-the-loop simulation with HDL Verifier™ are listed in the HDL
Verifier documentation.

You can also add custom FPGA boards by using the FPGA Board Manager. See “FPGA Board
Customization” (HDL Verifier) for details.

For FPGA-in-the-Loop or Customization for USRP™ Device using the HDL Workflow Advisor, a

supported synthesis tool must be installed, and the synthesis tool executable must be on the system
path. For details, see “Tool Setup” on page 2-2.

Generic ASIC/FPGA Hardware

The following hardware is supported for the Generic ASIC/FPGA workflow:

Synthesis Tool Device Family

Xilinx Vivado Kintex® 7

Artix® 7

Artix UltraScale+™

Kintex UltraScale+

KintexU

Spartan® 7

Virtex® UltraScale+

Virtex UltraScale+ HBM

Virtex UltraScale+ 58G

Virtex7

VirtexU

Zynq®

Zynq UltraScale+

Zyng Ultrascale+ RFSoC

Versal Al Core

Xilinx ISE Virtex6

Virtex5

Virtex4

Spartan-3A DSP

Spartan 3E

Spartan3

Spartan6

Altera® Quartus II Cyclone® IV

Cyclone V

Arria® II GX and GZ

1-4



HDL Language Support and Supported Third-Party Tools and Hardware

Synthesis Tool

Device Family

Note Altera Quartus II refers to the synthesis
tool Intel Quartus Prime Standard.

Stratix® IV

Stratix V

Arria 10

Arria V GX

MAX 10

Cyclone 10 LP

Intel Quartus Pro

Arria 10

Cyclone 10 GX

Stratix 10

Intel Agilex®

Microchip Libero SoC

SmartFusion2

RTG4

IGLOO2

PolarFire

PolarFire SoC

IP Core Generation Hardware

The following hardware is supported for the IP Core Generation workflow:

Synthesis Tool

Target Platform

Xilinx Vivado

ZedBoard FMC-HDMI-CAM

ZedBoard and FMCOMMS?2/3/4/

ZC706 FMC-HDMI-CAM

ZC706 FMCOMMS2/3/4/

ZC706 and FMCOMMS5

ZC702 FMC-HDMI-CAM

ZCU102 FMC-HDMI-CAM

ZCU102 and FMCOMMS2/3/4

ZCU106 IMX274MIPI-FMC

ZCU106 FMC-HDMI-CAM

Zyng ZC706 evaluation kit

Zynq ZC702 evaluation kit

PicoZed FMC-HDMI-CAM

Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit

Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit

Zynq UltraScale+ RFSoC ZCU216 Evaluation Kit

Kintex-7 KC705 development board

1-5



1 About HDL Coder

Synthesis Tool Target Platform

Artix-7 35T Arty development board

Versal Al Core Series VCK190 Evaluation Kit
Virtex-7 VC707 development board

Intel Quartus Pro Intel Arria 10 SoC development kit

Altera Quartus II Intel Arria 10 SoC development kit

Cyclone V SoC development kit Rev. C and Rev. D

Note Altera Quartus II refers to the synthesis Arrow DECA Max 10 FPGA development board
tool Intel Quartus Prime Standard.

Arrow SoC Kit development board
Arria 10 GX FPGA development kit
Microchip Libero SoC Microchip Polarfire® SoC Icicle Kit

Simulink Real-Time FPGA 1/0: Speedgoat Target Computer

You use the Simulink Real-Time FPGA I/0 workflow to target Speedgoat FPGA I/O modules.
These I/O modules are part of Speedgoat® target computer systems. To run the Simulink Real-
Time FPGA I/0 workflow, install the Speedgoat I/O Blockset and the Speedgoat HDL Coder
Integration Packages. After you install the integration packages, you can choose the Target platform
and then run the workflow to generate a Simulink Real-Time™ interface subsystem.

To learn about:

* The integration packages and how you can install them, go to HDL Coder Integration Packages
documentation online at www.speedgoat.com/knowledge-center. Follow the instructions to
download and install the Speedgoat - HDL Coder Integration Packages under Getting Started.

* Speedgoat I/O modules that are supported with the HDL Workflow Advisor, see Speedgoat Real-
Time FPGA Application Support from HDL Coder.

See “Speedgoat FPGA Support with HDL Workflow Advisor”.

See Also
hdlsetuptoolpath | hdlsetuphlstoolpath

More About
. “Tool Setup” on page 2-2

1-6


https://www.speedgoat.com/knowledge-center
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html

Getting Started with HDL Coder




2 Getting Started with HDL Coder

Tool Setup

2-2

In this section...

“Synthesis Tool Path Setup” on page 2-2

“HDL Simulator Setup” on page 2-3

“Xilinx System Generator Setup for ModelSim Simulation” on page 2-4
“Altera DSP Builder Setup” on page 2-5

“FPGA Simulation Library Setup” on page 2-5

“C/C++ Compiler Setup” on page 2-5

Synthesis Tool Path Setup

* “hdlsetuptoolpath Function” on page 2-2

* “hdlsetuphlstoolpath Function” on page 2-2

* “Add Synthesis Tool for Current HDL Workflow Advisor Session” on page 2-2
* “Check Your Synthesis Tool Setup” on page 2-3

* “Supported Tool Versions” on page 2-3

hdlsetuptoolpath Function

To use HDL Coder with one of the supported third-party FPGA synthesis tools, add the tool to your
system path using the hdlsetuptoolpath function. Add the tool to your system path before opening
the HDL Workflow Advisor. If you already have the HDL Workflow Advisor open, see “Add Synthesis
Tool for Current HDL Workflow Advisor Session” on page 2-2. You cannot set up third-party FPGA
synthesis tools in Simulink Online™.

hdisetuphistoolpath Function

To use HDL Coder for SystemC code generation, setup the synthesis tool path by using
hdlsetuphlstoolpath function. Add the synthesis tool path before opening the HDL Workflow
Advisor.

Add Synthesis Tool for Current HDL Workflow Advisor Session
Simulink to HDL Workflow

At the MATLAB command line, use the hdlsetuptoolpath function to add the synthesis tool.

2 In the HDL Workflow Advisor, in the Set Target > Set Target Device and Synthesis Tool step,
to the right of Synthesis tool, click Refresh.

The synthesis tool is now available.
MATLAB to HDL Workflow
1 MATLAB to HDL code generation

a At the MATLAB command line, use the hdlsetuptoolpath function to add the synthesis
tool.



Tool Setup

b In the HDL Workflow Advisor, select Code Generation Workflow as MATLAB to HDL. In
the Select Code Generation Target step, to the right of Synthesis tool, click Refresh
list.

The synthesis tool is now available.
2 MATLAB to SystemC code generation

a At the MATLAB command line, use the hdlsetuphlstoolpath function to add the
synthesis tool.

b In the HDL Workflow Advisor, select Code Generation Workflow as MATLAB to SystemC.
In the Select Code Generation Target step, to the right of Synthesis tool, click Refresh
list.

The synthesis tool is now available.
Check Your Synthesis Tool Setup

To check your Intel Quartus Prime Standard synthesis tool setup in MATLAB, try launching the tool
with the following command:

lquartus

To check your Intel Quartus Pro synthesis tool setup in MATLAB, try launching the tool with the
following command:

Igpro

To check your Xilinx Vivado synthesis tool setup in MATLAB, try launching the tool with the following
command:

lvivado

To check your Xilinx ISE synthesis tool setup in MATLAB, try launching the tool with the following
command:

lise

To check your Microchip Libero SoC synthesis tool setup in MATLAB, try launching the tool with the
following command:

Ilibero

To check your Cadence Stratus high level synthesis tool setup in MATLAB, try launching the tool with
the following command:

Istratus ide
Supported Tool Versions

For supported tool versions, see “Third-Party Synthesis Tools and Version Support” on page 1-3.

HDL Simulator Setup

To open the HDL simulator from MATLAB, enter these commands:

2-3



2 Getting Started with HDL Coder

2-4

MATLAB Command to Open HDL Simulator

HDL Simulator Command to Open the Simulator
Cadence Incisive® nclaunch (HDL Verifier)
Mentor Graphics® ModelSim® vsim (HDL Verifier)

When cosimulating with Xilinx Vivado simulator, the HDL files are compiled into a shared library
(DLL), and you do not need to open the simulator separately.

For example, to open the Mentor Graphics ModelSim simulator, enter this command:

vsim('vsimdir', 'C:\Program Files\ModelSim\questasim\10.5c\win64\vsim.exe")

To learn more about how to set up ModelSim, Questa®, Vivado simulator, or Incisive® for HDL
simulation, or for cosimulation with HDL Verifier, see “HDL Simulator Startup” (HDL Verifier).

Add Simulation Tool for Current HDL Workflow Advisor Session
MATLAB to HDL Workflow

Set up your simulation tool.

In the HDL Workflow Advisor, in the HDL Verification > Verify with HDL Test Bench task,
click Refresh list.

The simulation tool is now available.

Xilinx System Generator Setup for ModelSim Simulation

To generate ModelSim simulation scripts for a design containing Xilinx System Generator blocks, you
must:

* Have compiled Xilinx simulation libraries.
* Specify the path to your compiled libraries.

Required Libraries for Vivado and ISE

To generate ModelSim simulation scripts, you must have the following compiled Xilinx simulation
libraries for your EDA simulator and target language:

e unisim
e simprim
 Xxilinxcorelib

To learn how to compile these libraries, refer to the Xilinx documentation.

» For Vivado, see compile simlib.
* For ISE, see compxlib.

Specify Path to Required Libraries

Specify the path to your compiled Xilinx simulation libraries by setting the
XilinxSimulatorLibPath parameter for your model.

For example, you can use hdlset paramto set XilinxSimulatorLibPath:




Tool Setup

libpath = '/apps/Xilinx ISE/XilinxISE-13.4/Linux/ISE DS/ISE/vhdl/
mti se/6.6a/1in64/xilinxcorelib’;
hdlset param (bdroot, 'XilinxSimulatorLibPath', 1libpath);

Altera DSP Builder Setup

To generate code for a design containing both Altera DSP Builder and Simulink blocks, you must open
MATLAB with Altera DSP Builder. For details, refer to the Altera DSP Builder documentation.

FPGA Simulation Library Setup

To map your design to an Altera or a Xilinx FPGA simulator library:

+ Use Xilinx LogiCORE® IP Floating-Point Operator v5.0 or Altera floating-point megafunction IP
cores.

* Specify the compiled simulation library and the target language for your EDA simulator. Use
XilinxCorelLib simulation library for Xilinx LogiCORE IP and the EDA simulation library
compiler for Altera megafunction IP.

To learn how to compile this library, refer to the Xilinx compx1ib documentation.

» Specify the path to your compiled Altera or Xilinx simulation libraries. Altera provides the
simulation model files in \quartus\eda\sim_lib folder. Set the SimulationLibPath parameter
for your DUT.

For example, you can use hdlset paramto set SimulationLibPath:
myDUT = gcb;
libpath = '/apps/Xilinx ISE/XilinxISE-13.4/Linux/ISE DS/ISE/vhdl/

mti se/6.6a/1in64/xilinxcorelib’;
hdlset param (myDUT, 'SimulationLibPath', libpath);

You can also specify the simulation library path from the HDL Code Generation > Test Bench
pane in the Configuration Parameters dialog box.

C/C++ Compiler Setup

HDL Coder locates and uses a supported installed compiler. For most platforms, a default compiler is
supplied with MATLAB. For a list of supported compilers, see at https://www.mathworks.com/support/
compilers/current release/.

See Also
hdlsetuptoolpath | hdlsetuphlstoolpath

More About
. “Third-Party Synthesis Tools and Version Support” on page 1-3

2-5


https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html




Tutorials

+ “Basic HDL Code Generation Workflow” on page 3-2

* “Create HDL-Compatible Simulink Model” on page 3-5

* “Generate HDL Code from Simulink Model” on page 3-11

* “Verify Generated HDL Code from Simulink Model” on page 3-19

* “HDL Code Generation and FPGA Synthesis from Simulink Model” on page 3-24
* “Generation of Clock Bundle Signals in HDL Coder” on page 3-29

* “Get Started with MATLAB to HDL Workflow” on page 3-32

* “Basic HDL Code Generation and FPGA Synthesis from MATLAB” on page 3-37
* “Generate HDL Code from MATLAB Code Using the Command Line Interface” on page 3-43
* “Generate SystemVerilog Code for a MATLAB Function” on page 3-46

* “Generate SystemVerilog Code for a Simulink Model” on page 3-48

* “Generating Modular HDL Code for Functions” on page 3-50



3 Tutorials

Basic HDL Code Generation Workflow

3-2

You can use HDL Coder to generate synthesizable VHDL, Verilog, and SystemVerilog code from a
Simulink model or MATLAB algorithm. You can use the generated HDL code for FPGA programming,
ASIC prototyping, and production design. Using HDL Workflow Advisor, you can deploy the generated
HDL code on Xilinx, Intel, and Microchip boards. You can optimize your design for speed and area,
highlight critical paths, and generate resource usage estimates before synthesis.

Develop MATLAB or Simulink Design

You can develop a design for HDL code generation in MATLAB and Simulink. You can generate code
from your Simulink model or MATLAB algorithm by using HDL Coder. Write the MATLAB algorithm
with syntax and functions that are compatible with HDL code generation. Use HDL-compatible
Simulink blocks for creating your design with Simulink. To learn more, see “Create HDL-Compatible
Simulink Model” on page 3-5.

Set Up HDL Coder Project

To generate HDL code from your MATLAB algorithm, create and set up the HDL Coder project for
your MATLAB design. Add the MATLAB files to the HDL Coder project for which you want to generate
HDL Code. To learn more, see “Create and Set Up Your Project”.

Check HDL Compatibility with HDL Code Advisor

You can check the HDL compatibility of your Simulink model by using HDL Code Advisor. The HDL
Code Advisor tool verifies and updates your Simulink model or subsystem for compatibility with HDL
code generation. The Model Checker tool checks for model configuration settings, ports and
subsystem settings, block settings, support for native floating point, and conformance to the industry-
standard rules. For more information, see “Check HDL Compatibility of Simulink Model Using HDL
Code Advisor”.

Generate HDL Code

After you design your HDL-compatible Simulink model or MATLAB algorithm, you can generate the
HDL code using HDL Coder. You can select the desired target language, such as VHDL, Verilog, or
SystemVerilog. HDL Coder compiles the model before generating code. HDL Coder displays progress
messages in the MATLAB Command Window with links to the configuration set and the generated
HDL files.



Basic HDL Code Generation Workflow

See Also

* “Generate HDL Code from Simulink Model” on page 3-11
* “Basic HDL Code Generation and FPGA Synthesis from MATLAB” on page 3-37

Verify Generated HDL Code

After you generate the HDL code, you can test and verify your design using HDL test bench for your
Simulink model or MATLAB algorithm. A test bench includes stimulus data generated by signal
sources, component instantiation, and clock, reset, and clock enable inputs to drive the entity under
test.

During a test bench run, the software compares the generated output data to the outputs of the HDL
model for verification. You can simulate the generated test bench and script files by using the Mentor
Graphics ModelSim simulator. To learn more, see “Verify Generated HDL Code” on page 3-18.

Deploy Generated Code to Target Hardware

HDL Coder includes a workflow advisor. This tool automates prototyping generated code on Xilinx,
Intel, and Microchip boards and generates IP cores for ASIC and FPGA workflows. Using HDL Coder,
you can deploy your MATLAB or Simulink design:

* On standalone FPGA boards, such as an Intel FPGA or a Xilinx FPGA board.

* On platforms that have a separate FPGA and processor, such as the Simulink Real-Time target
machine with FPGA 1/0 boards.

* As hardware and software on system-on-chip (SoC) platforms, such as Xilinx Zynqg, Intel SoC, or
Microchip SoC.

See Also

* “Getting Started with Targeting Xilinx Zynq Platform”
* “Getting Started with Targeting Intel SoC Devices”
* “Integrate HDL IP Core with Microchip PolarFire SoC Icicle Kit Reference Design”

Optimize Design for Speed and Area

You can use the speed and area optimization methods to meet design requirements such as resource
usage, critical path estimation, and timing requirements. Apply optimizations to generate more
hardware-efficient HDL code. Use area and speed optimizations in HDL Coder to save resources and
improve the timing of your design on the target FPGA device. The optimizations do not change the
functional behavior of your algorithm.

You can initially generate HDL code and synthesize your design on your FPGA platform without
enabling optimizations. If the design does not meet the timing requirements, you can enable
optimizations and rerun the workflow until your design meets the area and speed requirements. To
learn more about types of optimization, see “Speed and Area Optimizations in HDL Coder”.

3-3



3 Tutorials

See Also

More About

. “Use Simulink Templates for HDL Code Generation”

. “Generate HDL Code from Simulink Model” on page 3-11

. “HDL Code Generation and FPGA Synthesis from Simulink Model” on page 3-24
. “Prototype and Deploy HDL Algorithm for an FPGA”

3-4



Create HDL-Compatible Simulink Model

Create HDL-Compatible Simulink Model

In this section...
“Use Blank DUT Template” on page 3-5
“Choose Blocks from HDL Coder Library” on page 3-6

“Develop Algorithm for DUT” on page 3-7

“Create Test Bench for Design” on page 3-8

“Simple Counter Model” on page 3-8

“Simulate and Verify Design Functionality” on page 3-9
“Generate HDL Code from Simulink Model” on page 3-10

This example illustrates how you can create a Simulink model for HDL code generation. To create a
MATLAB algorithm compatible for HDL code generation, see “Guidelines for Writing MATLAB Code
to Generate Efficient HDL and HLS Code”.

The model is a simple counter algorithm that counts upward and wraps back to zero after it reaches
the upper limit that you specify. To open the model directly without performing the steps, see “Simple
Counter Model” on page 3-8.

Use Blank DUT Template

To create a HDL-compatible Simulink model, use the Blank DUT template. The template is
preconfigured for HDL code generation by using the hdlsetup function.

1
On the MATLARB toolstrip, click the L-b_a,' button.

2 In the Simulink Start Page, navigate to the HDL Coder section, and then select the Blank DUT
template.

3 Save the model with the file name hdlcoder simple up counter.slx in a working folder
that is writable.

Note: This model is configured with ‘hdlsetup’

HDL_DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then run the following command:
makehdI{"HDL_DUT")



3 Tutorials

3-6

The Blank DUT template has a HDL DUT subsystem that corresponds to the Design-Under-Test
(DUT) for which you generate HDL code. To verify the DUT functionality, the template contains a test
bench outside the HDL DUT subsystem that provides inputs to the DUT and logs output values. See
“Partition Model into DUT and Test Bench”.

Choose Blocks from HDL Coder Library

To design your counter algorithm, use blocks from the HDL Coder Block Library. Blocks in this
library are preconfigured for HDL code generation. To filter the Simulink Library Browser to show
block libraries that support HDL code generation:

1 On the Apps tab, select HDL Coder.
2 From the HDL Code tab, select HDL Block Properties > Open HDL Block Library.

Alternatively, at the command line, enter hd111ib.

hdllib
&5 HDL Coder: Li -
BG oder : Library Browser O X
Enter search term w | }\u\ - :..— LAY ‘:.;)) - L")
HDL Coder
HDL Coder
Stateflow HOL
DSP System Toolbox HDL Support 7 ﬂ ' \ NFP
Vision HDL Toolbox
Communications Toolbox HDL Support Commonly Discontinuities Discrete HDL Floating Point
HDL Verifier Used Blocks Operations
Wireless HDL Toolbox
Recently Used HDL >
HDL HDL Subsys &8 =
OPS RAMs Iz
HDL Operations HDL RAMs HDL Logic and Bit
Subsystems Operations
+- ®
yeifu) Misc
+ X Q
Lookup Math Model-Wide Model
Tables Operations Utilities Verification
e ~i7
) II; £p ILL'? >'ﬁ> 4P
ECh e ZANp
Ports & Signal Signal Sinks
Subsystems Attributes Routing
1ate -
144
Sources User-Defined
Functions

Blocks in the HDL Coder Library are available with Simulink. If you do not have HDL Coder, you can
simulate the blocks in your model, but cannot generate HDL code.

You can find additional HDL-supported blocks in these block libraries:



Create HDL-Compatible Simulink Model

DSP System Toolbox HDL Support
Communications Toolbox HDL Support

Vision HDL Toolbox
Wireless HDL Toolbox

To restore the Library Browser to the default view, in the Library Browser, click the “ button.
Alternatively, at the command line, enter:

hdllib('off")

Develop Algorithm for DUT

1 Double-click the HDL_DUT subsystem. Drag blocks from the HDL Coder library to your model.
This table lists the blocks to add to your model for designing the counter. To learn about what a
block does and to specify its block parameters, double-click the block.

Block Library Number of Block Parameters

Blocks

Constant Sources 2 * Constant values: 1 and 0
* Output data type: uint8

Switch Signal Routing 2 Criteria for passing first
input: u2 > Threshold

Delay Discrete 2 Delay length: 1

Add Math Operations 1 Accumulator data type:
Inherit: Same as first input

Relational Operator |Logic and Bit 1 Relational operator: >

Operations
2 Rename the input ports Inl and In2 to count threshold and Enable respectively. Place the
blocks in your model and connect them.
Enable boolean > \ uintd uint8
. @ L Sl N Es
» 1 P | F out
uintd
0 » T .
'_| (1]hy]
) Lints Lt I uintd > oF
) »> boalefn
t8 s
Co—

count_threshold

The Enab'le signal specifies whether the counter counts upward from the previous value. When the
Enab'le signal is logical high, the counter counts up from zero to the count threshold value. When

3-7



3 Tutorials

the value of out becomes equal to the count threshold value, the counter wraps back to zero and
starts counting again. When the Enable signal becomes logical low, the counter holds the previous
value.

Create Test Bench for Design

Navigate to the top level of the model and change the input settings.

» Constant block input to count threshold: This input indicates the maximum value up to which
the counter counts. This example shows how to design a 4-bit up counter. Set the Constant value
to 15 (274 - 1), and set the Output data type to uint8.

The output data type of this Constant block then matches the output data type of the Constant
blocks inside the HDL DUT subsystem.

* Counter Free-Running block input to Enable: Remove the Counter Free-Running block. Replace
this block with a Constant block that has a value of 1, Output data type set to boolean, and
Sample time of 1.

Note: This model is configured with 'hdlsetup’

\

15 uints

i | boolean

-

HDL_DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then run the following command:
makehdl{"HDL_DUT')

See also “Create a Simple Model”.

The preceding section shows the hdlcoder simple up counter.slx model that you created by
following the steps described above. To open the model in MATLAB, click the Open Model button.

Simple Counter Model

Open this model to see a simple counter. The model counts up from zero to a threshold value and then
wraps back to zero. The threshold value is set to 15. To change the threshold value, change the value
of the input to the count_threshold port. The Enable signal specifies whether the counter counts
upward or holds the previous value. A value of 1 indicates that the counter counts upward
continuously.

3-8



Create HDL-Compatible Simulink Model

Note: This model is configured with 'hdlsetup”

¥

14

boolean

HOL_DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then nun the following command:
makehdI{"HDL_DUT}

Copyright 2018-2021 The MathWaorks, Inc.

Simulate and Verify Design Functionality

Set the Stop time of the model to 50. Simulate your model by clicking the |@| button. To see the
simulation results, open the Scope block at the top level of your model.

The simulation results display the Enable signal generating a constant value of 1. The out signal
counts from 0 to 15, wraps back to zero, and then counts up again.

3-9



3 Tutorials

3-10

4| Scope - O X

File Tools View Simulation Help o

R YO N S a- B £ &

Ready Sample based |Offset=0 |T=50.000

Generate HDL Code from Simulink Model

Before you generate HDL code, you can verify that the model settings are compatible for HDL code
generation. The counter model used in this example is compatible for HDL code generation. To verify
and update your model for HDL compatibility, use the HDL Code Advisor. See “Check HDL
Compatibility of Simulink Model Using HDL Code Advisor”.

See “Generate HDL Code from Simulink Model” on page 3-11.

See Also
hdllib | checkhdl | hdlsetup | hdlcodeadvisor

More About

. “Use Simulink Templates for HDL Code Generation”

. “Verify Generated HDL Code from Simulink Model” on page 3-19

. “HDL Code Generation and FPGA Synthesis from Simulink Model” on page 3-24



Generate HDL Code from Simulink Model

Generate HDL Code from Simulink Model

In this section...

“Model Templates for HDL Code Generation” on page 3-11
“Simple Counter Model” on page 3-11

“Generate HDL Code” on page 3-12

“View HDL Code Generation Files” on page 3-13

“Inspect Generated HDL Code” on page 3-14

“Validate HDL Behavior Using Validation Model” on page 3-17
“Verify Generated HDL Code” on page 3-18

This example shows how you can generate HDL code for a simple counter model in Simulink. This
model is compatible for HDL code generation. To create this counter model, see “Create HDL-
Compatible Simulink Model” on page 3-5.

Model Templates for HDL Code Generation

You can use templates to model registers, ROM, basic arithmetic operations, complex multipliers,
shift registers, and so on.

To choose your template, on the MATLAB toolstrip, click the '.E.' button, and then navigate to the
HDL Coder section. See “Use Simulink Templates for HDL Code Generation”.

Before generating HDL code, you can check and update the model for HDL compatibility by using the
HDL Code Advisor. See “Check HDL Compatibility of Simulink Model Using HDL Code Advisor”.

Simple Counter Model

Open this model to see a simple counter. The model counts up from zero to a threshold value and then
wraps back to zero. The threshold value is set to 15. To change the threshold value, change the value
of the input to the count_threshold port. The Enable signal specifies whether the counter counts
upward or holds the previous value. A value of 1 indicates that the counter counts upward
continuously.

3-11



3 Tutorials

3-12

Note: This model is configured with 'hdlsetup”

14

_lhu-\:\lean

HOL_DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then nun the following command:
makehdI{"HDL_DUT}

Copyright 2018-2021 The MathWaorks, Inc.

Generate HDL Code

For the counter model, the HDL DUT subsystem is the DUT. To generate code for the DUT:

1 In the Apps tab, select HDL Coder.

2 Select the DUT Subsystem in your model, and make sure that this Subsystem name appears in
the Code for option on the HDL Code tab. To remember the selection, pin this option. Click
Generate HDL Code.

By default, HDL Coder generates VHDL code in the target hdlsrc folder.
Generate Verilog Code

To generate Verilog code for the counter model:

1 Inthe HDL Code tab, click Settings.

2 Inthe HDL Code Generation pane, for Language, select Verilog. Click Apply and then click
Generate.



Generate HDL Code from Simulink Model

i@ Configuration Parameters: hdlcoder_simple_up_counter/Configuration (Active) = O X

Q

Solver

Set Basic Options

Data Import/Export

Math and

Data Types Generate HDL for: hdlcoder_simple_up_counter/HDL_DUT v

» Diagnostics Language: Verilog -

Hardware

Implementation Code Generation Folder: |hdlsrc Browse...

Model Referencing

Simulation Target
» Code Generation

Coverage

Restore Model Defaults Run Compatibility Checker

Generate

¥ HDL Code Generation

Target

Optimization
Floating Point
Global Settings

Report
Test Be
EDA To

nch
ol Scripts

HDL Coder compiles the model before generating code. Depending on model display options such as
port data types, the model can change in appearance after code generation. As code generation
proceeds, HDL Coder displays progress messages in the MATLAB command line with links to the
configuration set and the generated files. To view the files in the MATLAB Editor, click the links.

The process is completed and displays the message:

### HDL Code Generation Complete.

View HDL Code Generation Files

A folder icon for the hdlsrc folder appears in the current folder. To view the generated code and
script files, double-click the hd1lsrc folder, and then double-click the folder that has the same name
as the model for which you generated HDL code.

« HDL DUT.vhd: VHDL code that contains the entity definition and RTL architecture implementing
the counter that you designed. If you generated Verilog or SystemVerilog code, you get a
HDL DUT.v or HDL DUT. sv file.

* HDL DUT compile.do: Mentor Graphics ModelSim compilation script.

* HDL DUT map.txt: Mapping file that maps generated entities or modules in the HDL code to
subsystems in the model that generated them. See “Trace Code Using the Mapping File”.

* HDL DUT report.html: HDL check report displays HDL code generation status and warnings or
messages.

* gm_hdlcoder simple up counter.slx: Generated model that behaviorally represents the
HDL code in the Simulink modeling environment.

* hcv: HDL code view file to display the generated code on the Code View panel in Simulink. To
view generated HDL code in Simulink, click View Code on the HDL Coder app.

HDL Coder creates a behavioral model of the HDL code called the generated model. The generated
model name is the same as the original model and has the prefix gm . The generated model is bit-true

3-13



3 Tutorials

Solver

and cycle-accurate to the generated HDL code. This model shows the effect of block implementations
and speed and area optimizations that you specified. See also “Speed and Area Optimizations in HDL
Coder”.

To open the generated model for the counter, enter:

gm_hdlcoder simple up counter

For the counter model, as optimizations are disabled, the generated model is identical to the original
model.

To view your generated HDL code alongside your model, you can use the Code view. After you
generate HDL code for your model, the Code view displays the generated code to the right of your
model. To manually open the Code view, open the HDL Coder app. On the Simulink toolstrip click the
View Code button. Select the file that you want to display by using the drop-down list at the top of
the Code view. You can dock or undock the Code view from the editor and minimize or expand the
Code view using the down arrow in the upper right corner of the Code view.

Inspect Generated HDL Code

To identify the mapping between the source model and the generated HDL code more easily, generate
a traceability report. Use the report to navigate from a block in your model to the generated code for
that block and from the code to a block in your model.

To generate the traceability report:

1 Inthe HDL Code tab, click Settings > Report Options.

2 Inthe HDL Code Generation > Report pane, select Generate traceability report, and then
generate HDL code for the HDL_DUT subsystem

Traceability Reports

Data Import/Export

Math and Data Types

+| Generate traceability report

» Diagnostics Traceability style: |Line Level -

Hardware Implementation

Generate model Web view

Model Referencing

Simulation Target

Optimization Reports

» Code Generation

Coverage
¥ HDL Code Generation

3-14

v | Generate resource utilization report

v'| Generate optimization report

Optimization Timing Reports
Floating Point
Global Settings Generate high-level timing critical path report

Custom Timing Database Directory: Browse

Test Bench
EDA Tool Scripts

After you generate code, the Code Generation Report window opens. HDL Coder writes the code
generation report files in the hdlsrc\html\ folder of the build folder. If you close the report, you
can navigate to this folder to reopen the report.



Generate HDL Code from Simulink Model

® |{:

OBEmE L E S

v BB

To navigate from the HDL code to the model, follow either of these workflows:

Use the Code view:

1

Click the Code view panel on the right that appears after generating HDL code or manually click

the View Code button on the Simulink toolstrip of the HDL Coder app.

To navigate from model elements to their generated code, in your model, click a block. The Code
view highlights the code for the block and scrolls to the highlighted code lines.

U symmetric_fir =
[%al sfir fixed ¥ [Pa|symmetric fir A
2
delayed_xout
1 . 1 1 . 1
soigfEntn| = Sfx1§ En10 g Ent0| x| Sfx16 JEnT0
udf ud? udé ud5
sfix18_En10 - sfix16_En1 bfic16_En10 sfix16_En10
_in
ud1
.
sfix17_En1D sfix17_En10
sfix33_En20

3

sixds_En20

v Q Search

: PROCESS (clk, reset)

igned(16#0000%, 16);

udz_outl <= to_signed(1c#eeees, 16);

: PROCESS (clk, reset)

igned (16400008, 16);

HDL Code

< symmetric_firvhd
ud3

24 5] ud2_process

25 BEGIN

26 3 IF reset = '1' THEM

29

30 ud2_outl <= udl_outl;
3 53

a2 5

33 END FROCESS ud2_process;
36 =) ud3_process : PROCESS (clk, reset)
a7 BEGIN

38 = IF reset = '1' THEM

38

40 = ELSIF Clk'EVENT AND clk = '1' THEN
41 = IF enb = '1' THEN

12 udz_outl <= uda_outl;
43 END IF;

44 END IF;

45 END PROCESS ud3_process;
48 =] udé_process

43 EEGIN

50 = IF reset = '1' THEM

51 udd_outl <= t

52 = ELSIF clk'EVENT AMD

53 2 IF enb = '1' THEM

54 uds_out1 <= ud2_outi;
hdlsre\sfir_fixed\symmetric_fir.

na/ symmetric_fir.vhd

110 < >

Ln 140

In the Code view, click the line number hyperlink or code comment link to highlight the block
that the code line traces to. You can trace lines of code to the model elements from which they

were generated.

3-15

Col

X

4



3 Tutorials

Le=) A symmetric_fir g | HDL Code ® x
® |[Palsfir fixed P [Ba]symmetric fir || &« symmetric_firvhd v Q Search
é udgm h_ini_signed <= signed(h_in1);
_ | 1 | 1 1 226 mioutl <= 31_outl * h_inl_signed;
=+ ix16 JEn10 sfixl _E'HE'\_-_I sfix1d_En1o S 18, E'\\D\_-_I
B uda ud? udé ud5 h_inz_signed <= signed(h_inz);
230 m2_outl <= &2_outl * h_in2_signed;
O ®smc_sr|: 1 [sfx1sEnt 1 [emieEnt _]—1|smc_sr|: 1 [efxie Enio
32 55_sdd_cast <= resize(ml_outl, 24);
" Lr' \WI ITI \TI 233 | 25_add_cast_1 <= resize(m_outl, 34);
234 a5_outl <= a5_add_cast + a5_add_cast_1;
h_in3_signed ¢= signed(h_in3);
) 238 m3_outl <= a3_outl * h_in3_signed;
— 0 h_in4_signed <= signed(h_in4);
242 mé_outl <= a4_outl = h_ind_signed;
244 36_add_cast <= resize(m3_outl, 34);
245 28_add_cast_1 <= resize(mé_outl, 34);
248 a6_outl <= a6_add_cast + a6_add_cast_1;
y_out_pre_add_cast <= resize(aS_outl, 35);
y_out_pre_add_cast_1 <= resize(as_out1, 35);
250 y_out_pre_outl <= y_out_pre_sdd_cast + y_out_pre_add_cast_1;
y_out <= std_logic_vector(y_out_pre_out1);
5] =i EnZ0 delayed_wout <= ste_logic_vector(uds_out1);
> yout hdlsrc\sfir_fixed\symmetric_fir.vhd/symmetric_fir.vhd Ln 234 Co 1
Use the Code Generation Report:
1 In the Code Generation Report, navigate to the Traceability Report section, and then click the
links in the Code Location section.
2 Select the hyperlink to a line of code to highlight the corresponding block in your model.
To navigate from a block in your model to the HDL code, select that block, and then click the
Navigate to Code button in the Review Results section of the HDL Code tab.
76 Constantl_outl <= to_unsigned(1, 32);
': count_threshold_unsigned <= unsigned(count I::> o inth2
86 Constant_outl <= to_unsigned(@, 32); ’
:Sé Add_outl <= Delay_outl + Constantl_outl;
ff {2 Navigate to Code p i
é:‘» Relational_Operator_relopl <= '"1° WHEN Addif ount, thrasheld
85 ‘a'; Ee

3-16

See “Navigate Between Simulink Model and HDL Code by Using Traceability” and “Create and Use
Code Generation Reports”.

In the Generated Source Files section, if you click the HDL file HDL DUT, you see the signals clk,
reset, and clk enable. These signals are the clock, reset, and clock enables signals that control
the flip-flops on the target hardware. HDL Coder generates these signals in the code depending on
sequential elements such as Delay blocks that you use in your model. See “Generation of Clock
Bundle Signals in HDL Coder” on page 3-29.




Generate HDL Code from Simulink Model

Validate HDL Behavior Using Validation Model

To validate the behavioral model of the HDL code with your original model, generate a validation
model. The validation model contains both the original model and generated model. It compares the
outputs of both models by using the test vectors that you provided in the original model.

To generate the validation model:

1 Inthe HDL Code tab, click Settings.

2 Inthe HDL Code Generation > Global Settings > Model Generation tab, select Validation
model, and then generate HDL code for the HDL DUT subsystem.

Additional settings
General Ports Coding style Coding standards Model Generation Advanced

+| Generated model
+| Validation model
Maming options
Prefix for generated model: |gm_

Suffix for validation model: | wvnl

In the code generation logs, you see a link to the validation model. The validation model has the same
prefix as the generated model and also has the suffix vnl. For the counter model, the validation
model has the name gm hdlcoder simple up counter vnl.slx. You can find this model in the
same folder as the generated model. To open this model, enter:

gm_hdlcoder simple up counter _vnl

3-17



3 Tutorials

MNote: This model is configured with "hdlsatup’

¥

ToCoverifySrc DL _DUT ToCowverifySink

Add your design targeted for ASIC/FPGA inside HDL_DUT and then run the following command:

|

FromGCoverifySrc HDL_DUT_wnl Compare

After you simulate the model, double-click the Compare subsystem, and then navigate inside the
Assert Out subsystem. If you open the Scope block, you see that the err signal has a value of zero,
which means that the generated model output matches the original model.

See “Generated Model and Validation Model”.

Verify Generated HDL Code

Before you deploy your design on the target hardware, verify the generated HDL code. From the
hdlsrc folder, navigate to the current working folder. See “Verify Generated HDL Code from
Simulink Model” on page 3-19.

See Also
makehdl | hdlset param| hdlsetup

More About

. “Create HDL-Compatible Simulink Model” on page 3-5
. “HDL Code Generation and FPGA Synthesis from Simulink Model” on page 3-24
. “Generate HDL Code from Simulink Model Using Configuration Parameters”

3-18



Verify Generated HDL Code from Simulink Model

Verify Generated HDL Code from Simulink Model

In this section...
“What is an HDL Test Bench?” on page 3-19
“Simple Counter Model” on page 3-19

“Verification Methods” on page 3-20

“Generate HDL Test Bench” on page 3-20

“View HDL Test Bench Files” on page 3-21

“Run Simulation and Verify Generated HDL Code” on page 3-22
“Deploy Generated HDL Code on Target Device” on page 3-22

This example shows how to generate an HDL test bench and verify the generated code for a simple
counter model. To generate HDL code for this model, see “Generate HDL Code from Simulink Model”
on page 3-11. If you have not generated HDL code for this model, HDL Coder runs code generation
before generating the testbench.

What is an HDL Test Bench?

To verify the functionality of the HDL code for the DUT, generate a HDL test bench. A test bench
includes:
» Stimulus data generated by signal sources connected to the entity under test.

* Output data generated by the entity under test. During a test bench run, this data is compared to
the outputs of the VHDL model for verification.

* Clock, reset, and clock enable inputs to drive the entity under test.
* A component instantiation of the entity under test.
* Code to drive the entity under test and compare its outputs to the expected data.

You can simulate the generated test bench and script files by using the Mentor Graphics ModelSim
simulator.

Simple Counter Model

Open this model to see a simple counter. The model counts up from zero to a threshold value and then
wraps back to zero. The threshold value is set to 15. To change the threshold value, change the value
of the input to the count _threshold port. The Enable signal specifies whether the counter counts
upward or holds the previous value. A value of 1 indicates that the counter counts upward
continuously.

3-19



3 Tutorials

3-20

Note: This model is configured with 'hdlsetup”

wantl

14

¥
g
e
3
g
1

wantl

¥

boolean

HOL_DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then nun the following command:
makehdI{"HDL_DUT}

Copyright 2018-2021 The MathWaorks, Inc.

Verification Methods

If you have HDL Verifier installed, you can also verify the generated HDL code by using these
methods.

Verification Method For More Information

HDL Cosimulation “Cosimulation”

SystemVerilog DPI Test Bench “SystemVerilog DPI Test Bench”
FPGA-in-the-Loop “FPGA-in-the-Loop”

Generate HDL Test Bench

Generate VHDL, Verilog, or SystemVerilog test bench code as applicable. By default, the HDL code
and the test bench code are written to the same target folder hdlsrc relative to the current folder.

For the counter model, the HDL DUT subsystem is the DUT. To generate the testbench, select this
subsystem.

1 Inthe Apps tab, select HDL Coder.

2 Select the DUT subsystem, HDL DUT, and make sure this name appears in the Code for option
on the HDL Code tab. To remember the selection, pin this option. Click Generate Testbench.

Generate Verilog Test Bench Code

To generate Verilog testbench code for the counter model:

1 Inthe HDL Code tab, click Settings.
2 Inthe HDL Code Generation pane, for Language, select Verilog.



Verify Generated HDL Code from Simulink Model

3 Inthe HDL Code Generation > Test Bench pane, click Generate Test Bench.

& Configuration Parameters: hdlcoder_simple_up_counter/Configuration (Active) O X
Solver Set Basic Options
Data Import/Export hdicoder simpl /HDL DUT
Math and Data Types Generate HDL for: coder simple up counter | )
» Diagnostics Language: Verilog -
Hardware Implementation Code Generation Folder: |hdlsrc Browse...
Model Referencing
Simulation Target Restore Model Defaults Run Compatibility Checker
» Code Generation
Coverage Generate
¥ HDL Code Generation
Target
Optimization

Floating Point
Global Settings
Report

Test Bench

EDA Tool Scripts

HDL Coder compiles the model and generates the test bench.

Test bench generation is completed and displays this message. The generated files appear in the
hdlsrc folder.

### HDL TestBench Generation Complete.

View HDL Test Bench Files

For the counter model, the hdlsrc folder contains these test bench files.

* HDL DUT tb.vhd: VHDL test bench code containing generated test and output data. If you
generated Verilog or SystemVerilog test bench code, the generated files are HDL DUT tb.v or
HDL DUT tb.sv.

 HDL DUT tb pkg.vhd: Package file for VHDL test bench code. If you generated SystemVerilog
test bench code, the generated file is HDL DUT tb pkg.sv. This file is not generated if you
specified Verilog as the target language.

« HDL DUT tb compile.do: Mentor Graphics ModelSim compilation script (vcom commands).
This script compiles and loads the entity to be tested (HDL DUT.vhd) and the test bench code
(HDL DUT tb.vhd).

* HDL DUT tb_sim.do: Mentor Graphics ModelSim script to initialize the simulator, set up wave
window signal displays, and run a simulation.

To view the generated test bench code in the MATLAB Editor, double-click the HDL DUT tb.vhd or
HDL DUT tb.v file in the current folder.

3-21



3 Tutorials

3-22

Run Simulation and Verify Generated HDL Code

To verify the simulation results, you can use the Mentor Graphics ModelSim simulator. You must have
already installed Mentor Graphics ModelSim.

To open the simulator, use the vsim (HDL Verifier) function. This command shows how to open the
simulator by specifying the path to the executable:

vsim('vsimdir','C:\Program Files\ModelSim\questasim\10.6b\win64\vsim.exe")

To compile and run a simulation of the generated model and test bench code, use the HDL Coder

generated scripts. For the counter model, run these commands to compile and simulate the
generated test bench for the HDL DUT Subsystem.

1 Open the Mentor Graphics ModelSim software and navigate to the folder that has the generated
code files and the scripts.

2 Use the generated compilation script to compile and load the generated model and text bench
code. For the HDL DUT subsystem, run this command to compile the generated code.

QuestaSim>do HDL DUT tb compile.do

3  Use the generated simulation script to execute the simulation. You can ignore warning messages.
For the HDL_DUT Subsystem, run this command to simulate the generated code.

QuestaSim>do HDL DUT tb sim.do

The simulator optimizes your design and displays the results in a wave window. if you don't see
the simulation results, open the wave window. The simulation script displays inputs and outputs
in the model including the clock, reset, and clock enable signals in the wave window.

Jjhdl_dut_thju_HDL_DUTfdk
Jfhdl_dut_tbfu_HDL_DUT freset
Jjhdl_dut_thju_HDL_DUT/dk_enable
Jhdl_dut_tbju_HDL_DUT/count_threshold
£ jhdl_dut_tb/u_HDL_DUT/Enable

“ fhdl_dut_tbju_HDL_DUT fce_out

fhdl_dut_tbfu_HDL_DUT fout_rswd 32'h00000003
fhdl_dut_tbfout_rsvd_ref 32'h00000002

You can now view the signals and verify that the simulation results match the functionality of your
original design. After verifying, close the Mentor Graphics ModelSim simulator, and then close the
open files in the MATLAB Editor.

Deploy Generated HDL Code on Target Device

To deploy the generated code on a target FPGA device, use the Simulink HDL Workflow Advisor. See
“HDL Code Generation and FPGA Synthesis from Simulink Model” on page 3-24.



Verify Generated HDL Code from Simulink Model

See Also

Functions
makehdl | makehdltb

Model Settings

HDL test bench | Cosimulation model | SystemVerilog DPI test bench | Simulation tool | HDL
code coverage

More About
. “HDL Test Bench”
. “HDL Code Generation and FPGA Synthesis from Simulink Model” on page 3-24

3-23



3 Tutorials

HDL Code Generation and FPGA Synthesis from Simulink Model

3-24

In this section...

“Simulink HDL Workflow Advisor” on page 3-24
“Simple Counter Model” on page 3-24

“Set Up Tool Path” on page 3-25

“Open the HDL Workflow Advisor” on page 3-25
“Generate HDL Code” on page 3-26

“Perform FPGA Synthesis and Analysis” on page 3-27

“Run Workflow at Command Line with a Script” on page 3-28

This example shows how you can generate HDL code for a simple counter model and synthesize the
generated code on a Xilinx FPGA by using the Simulink HDL Workflow Advisor. To create this model,
see “Create HDL-Compatible Simulink Model” on page 3-5.

HDL Workflow Advisor is not available in Simulink Online.

Simulink HDL Workflow Advisor

The HDL Workflow Advisor guides you through generating HDL code for a Simulink subsystem and
the FPGA design process, such as:

* Checking the model for HDL code generation compatibility and automatically fixing incompatible
settings.
* Generation of HDL code, a test bench, and scripts to build and run the code and test bench.

* Generation of cosimulation or SystemVerilog DPI test benches and code coverage (requires HDL
Verifier).

* Synthesis and timing analysis through integration with third-party synthesis tools.

* Back-annotation of the model with critical path information and other information obtained during
synthesis.

* Complete automated workflows for selected FPGA development target devices and the Simulink
Real-Time FPGA 1/0 workflow, including FPGA-in-the-loop simulation.

Simple Counter Model

Open this model to see a simple counter. The model counts up from zero to a threshold value and then
wraps back to zero. The threshold value is set to 15. To change the threshold value, change the value
of the input to the count_threshold port. The Enable signal specifies whether the counter counts
upward or holds the previous value. A value of 1 indicates that the counter counts upward
continuously.



HDL Code Generation and FPGA Synthesis from Simulink Model

Note: This model is configured with 'hdlsetup”

wantl

14

¥
g
e
3
g
1

wantl

¥

boolean

HOL_DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then nun the following command:
makehdI{"HDL_DUT}

Copyright 2018-2021 The MathWaorks, Inc.

Set Up Tool Path

To synthesize your design on a target platform, before you open the HDL Workflow Advisor and run
the workflow, set up the path to your synthesis tool. This example uses Xilinx Vivado, so you must
have already installed Xilinx Vivado. To set the tool path, use the hdlsetuptoolpath function to
point to an installed Xilinx Vivado 2020.2 executable.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath',...
"C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

If you use a different synthesis tool, set the path to that synthesis tool by using hdlsetuptoolpath.
To learn about the latest supported tools, see “HDL Language Support and Supported Third-Party
Tools and Hardware” on page 1-3.

If you want to generate HDL code but not synthesize your design, you do not have to set the tool
path.

Open the HDL Workflow Advisor
To start the HDL Workflow Advisor from a Simulink model,

1 Inthe Apps tab, select HDL Coder.

2 Select the DUT Subsystem in your model, HDL DUT, and make sure this name appears in the
Code for option on the HDL Code tab. To remember the selection, pin this option. Click
Workflow Advisor.

When you open the HDL Workflow Advisor, the code generator might warn that the project folder is
incompatible. To open the Advisor, select Remove and continue.

The HDL Workflow Advisor displays a group of tasks in the left pane grouped by folders. Expanding
the folders shows available tasks in each folder. Selecting a task or folder displays information about

3-25



3 Tutorials

3-26

that task or folder in the right pane. The right pane has simple controls for running the task to
several parameters and options for code or test bench generation, and contains a display area for
status messages and other task results.

To learn more about each individual task, right-click that task, and select What's This?.

¥ | Solpes—tis===t=iag cp
Whgat's This?
&

See “Getting Started with the HDL Workflow Advisor”.

Generate HDL Code

1 In the Set Target > Set Target Device and Synthesis Tool step, for Synthesis tool, select
Xilinx Vivado and select Run This Task. See also “Workflows in HDL Workflow Advisor”. To
generate HDL code but not synthesize the code, leave the Synthesis tool setting to No
Synthesis Tool Specified.

1.1. Set Target Device and Synthesis Tool
Analysis ("~ Triggers Update Diagram)

Set Target Device and Synthesis Tool for HDL code generation
Input Parameters

Target workflow: | Generic ASIC/FPGA i
Target platform: Launch Board Manager
Synthesis tool: | Xilink Vivado * | Tool version: | 2018.2 Refresh
Family: | Virtex? * | Device: |xc7wnd85t ~

Package: |ffgl761 * | Speed: -2 hd

Project folder: | hdl_prj Browse...

Run This Task

Resuilt: o Passed

Passed Set Target Device and Synthesis Tool.

2 In Set Target Frequency task, specify a target frequency that you want the design to achieve by

using the Target Frequency parameter. For this example, set Target Frequency (MHz) to 200.

3 To check you model for code generation compatibility, run the tasks in the Prepare Model For

HDL Code Generation folder. Right-click the Check Sample Times task and select Run to
Selected Task. If running a task generates a warning, select Modify All, and rerun the task.



HDL Code Generation and FPGA Synthesis from Simulink Model

To modify code generation , use the tasks in Set Code Generation Options. For example, to
customize the target HDL language and the target code generation folder, use the Set Basic
Options task. After you make changes, click Apply.

To generate code, right-click the Generate RTL Code and Testbench task and select Run to
Selected Task.

Perform FPGA Synthesis and Analysis

1

In the FPGA Synthesis and Analysis > Perform Synthesis and P/R > Run Implementation
task, clear Skip this task and click Apply. Then, right-click this task and select Run to
Selected Task.

The task displays the amount of resources consumed by the design and the data path delay. The
slack is the difference between the required time and the arrival time for a combinational path.
In this case, the slack is a positive value, which means that data arrived much earlier than the
required time.

Parsed resource report file: HDL_DUT utilization placed.rpt.

Resource summa ry

Slice LUTs 47
Slice Registers 32
DSPs 0
Block PAM Tile O
URAM 0

Parsed timing report file: timing_post_route rpt.

Timing summary

Bequirement 5
Data Path Delay 2.858
Slack 2113

Right-click Annotate Model with Synthesis Result and select Run to Selected Task. If you
chose Intel Quartus ProorMicrochip Libero SoC as the Synthesis tool, the Annotate
Model with Synthesis Result task is not available. To see the critical path, run the workflow to
synthesis and then open the timing reports.

View the annotated critical path in the model.

3-27



3 Tutorials

3-28

uint3?

1 uint32
7t ()

uint32
L -
27000 (ns)

Lnk32

wintag +* uint32
1 i -+

t—:nIEL

¥ out

uintp2

Critical path is a combinational path between the input and output that has the maximum delay. The
critical path delay for the counter model is 2.77ns. The data path delay reported in Run
Implementation task is more than the critical path because it accounts for routing delays on the
target FPGA. To save resources, optimize the critical path, and improve timing of your design on the
target FPGA, use speed and area optimizations in HDL Coder. To learn more, see “Speed and Area

Optimizations in HDL Coder”.

Run Workflow at Command Line with a Script

To run the HDL workflow at the MATLAB command prompt, export the Workflow Advisor settings to a
script. To export to script, in the HDL Workflow Advisor window, select File > Export to Script. In
the Export Workflow Configuration dialog box, enter a file name and save the script. See “Run HDL

Workflow with a Script”.

See Also

hdladvisor | hdlsetuptoolpath | makehdl

More About

. “Tool Setup” on page 2-2

. “Create HDL-Compatible Simulink Model” on page 3-5
. “Generate HDL Code from Simulink Model” on page 3-11



Generation of Clock Bundle Signals in HDL Coder

Generation of Clock Bundle Signals in HDL Coder

The clock bundle signals consist of clock, reset, and clock enable signals. During code generation,
HDL Coder creates the clock bundle signals based on sequential elements such as persistent
variables or Delay blocks that you use in your design. By default, a single primary clock and a single
primary reset drives all sequential elements in your design.

MATLAB Code and Clock Relationship

If you use persistent variables in MATLAB, HDL Coder generates the clock bundle signals. A
persistent variable is a local variable in a MATLAB function that retains its value in memory between
calls to the function. For code generation, functions must initialize a persistent variable if it is empty.
For more information, see persistent.

Consider this MATLAB code that uses a persistent variable n.

function y = persist fcn(u)
persistent n

if isempty(n)
n=1;
end

y
n

end

n + u;

When you generate code, HDL Coder creates the clock, reset, and clock enable signals. These signals
are named as clk, reset, and clk _enable in the HDL code. To learn how to generate HDL code,
see “Basic HDL Code Generation and FPGA Synthesis from MATLAB” on page 3-37.

This code shows the generated Verilog code for the model. To match the MATLAB persistent variable
behavior, the HDL code uses an always block. At the positive edge of the clock signal, when reset is
low and the enable signal is high, the value tmp is assigned to the variable n after a delay of 1 ns.

“timescale 1 ns / 1 ns
module persist fcn fixpt
(clk, reset, clk enable,
u, ce out, vy);
input clk, reset, clk enable;
input u; // ufixl
output ce out;
output vy; // ufixl

assign enb = clk enable;

assign p4tmp 1 = {1'b0, u};
assign tmp = n + p4tmp 1;

3-29



3 Tutorials

3-30

always @(posedge clk or posedge reset)
begin : n_reg process
if (reset == 1'bl) begin
n <= 2'b01;
end
else begin
if (enb) begin
n <= tmp;
end
end
end

assign y = n[0];
assign ce out = clk enable;

endmodule // persist fcn fixpt

See also “Persistent Variables and Persistent Array Variables”.

Simulink Model and Clock Relationship

To model sequential elements in Simulink and generate the clock bundle signals, you can use various
kinds of Delay blocks, Stateflow charts, or persistent variables in MATLAB Function blocks or
MATLAB System blocks. The code generator maps the sample time that you specify on your model to
clock cycles in the HDL design. By default, a model is single rate which means that one sample time
unit in Simulink maps to one clock cycle in the HDL code.

For example, consider this model that outputs unary minus of an input after two units of sample time.
The input has int32 as the output data type.

int32 int32 int32 int32
(1 y—» 21 ———» —u zV —»( 1)

When you generate code, HDL Coder creates the clock, reset, and clock enable signals. These signals
are named as clk, reset, and clk _enable in the HDL code. To learn how to generate code, see
“Generate HDL Code from Simulink Model” on page 3-11.

This code shows the generated Verilog code for the model. To match the Simulink Delay block
behavior, the HDL code uses an always block for each Delay block. At the positive edge of the clock
signal, when reset is low and the enable signal is high, the input is passed to the output after a unit
delay. One always block delays the input by 1 ns before computing the unary minus. The other
always block computes the unary minus after 1 ns.

“timescale 1 ns / 1 ns
module unary minus

(clk, reset, clk enable,
Inl, ce out, Outl);



Generation of Clock Bundle Signals in HDL Coder

input clk, reset, clk enable;
input signed [31:0] Inl; // int32
output ce out;

output signed [31:0] Outl; // int32

assign enb = clk enable;

always @(posedge clk or posedge reset)
begin : Delay process
if (reset == 1'bl) begin
Delay outl <= 32'sb0;
end
else begin
if (enb) begin
Delay outl <= Inl;
end
end
end

always @(posedge clk or posedge reset)
begin : Delay2 process
if (reset == 1'bl) begin
Delay2 outl <= 32'sh0;
end
else begin
if (enb) begin

Delay2 outl <= Unary Minus outl;

end
end
end

endmodule // unary_minus

If you use different sample times in your model or enable speed and area optimizations, the model
becomes multirate. To learn about clock bundle generation from multirate models, see “Code
Generation from Multirate Models”.

See Also
makehdl | hdlsetup

More About

“Initialize Persistent Variables in MATLAB Functions”

“Guidelines for Clock and Reset Signals”
“Timing Controller for Multirate Models”

“Multirate Model Requirements for HDL Code Generation”

3-31



3 Tutorials

Get Started with MATLAB to HDL Workflow

This example shows how to create an HDL Coder™ project and generate code from your MATLAB®
design. In this example, you:

Create a MATLAB HDL Coder project.

Add the design and test bench files to the project.

Start the HDL Workflow Advisor for the MATLAB design.

Run fixed-point conversion and HDL code generation.

A W N R

FIR Filter MATLAB Design

The MATLAB design mlhdlc sfiris a simple symmetric FIR filter.

design name = 'mlhdlc sfir';
testbench _name = 'mlhdlc _sfir tb';

Review the MATLAB design.

open(design_name);

0.0.0.0.00000000000000000000000000000000 )
"676°6"6°0°6°0°0 0600000000000 000000006060°00600°006000

MATLAB design: Symmetric FIR Filter

000000

0.0.0
6760760

Introduction:

% We can reduce the complexity of the FIR filter by leveraging its symmetry.
% Symmetry for an n-tap filter implies, coefficient hO® = coefficient hn-1,
% coefficient, hl = coefficient hn-2, etc. In this case, the number of

% multipliers can be approximately halved. The key is to add the

% two data values that need to be multiplied with the same coefficient

% prior to performing the multiplication.

Key Design pattern covered in this example:
(1) Filter states represented using the persistent variables
(2) Filter coefficients passed in as parameters

% Copyright 2011-2019 The MathWorks, Inc.

s#codegen
function [y out, delayed xout] = mlhdlc sfir(x in,h inl,h in2,h in3,h in4)
% Symmetric FIR Filter

% declare and initialize the delay registers
persistent udl ud2 ud3 ud4 ud5 ud6 ud7 ud8;
if isempty(udl)
udl = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; udé = 0; ud7 = 0; ud8 = 0;
end

% access the previous value of states/registers
al = udl + ud8; a2 = ud2 + ud7;
a3 = ud3 + ud6; a4 = ud4 + ud5;

% multiplier chain

3-32



Get Started with MATLAB to HDL Workflow

ml
m3

h inl * al; m2
h in3 * a3; m4

h in2 * a2;
h in4 * a4;

% adder chain
a5 =ml + m2; a6 = m3 + m4;

% filtered output
y out = a5 + a6;

% delayout input signal
delayed xout = ud8;

[)

% update the delay line

ud8 = ud7;
ud7 = ud6;
udé = ud5;
ud5 = ud4;
ud4 = ud3;
ud3 = ud2;
ud2 = udl;
udl = x_in;
end

FIR Filter MATLAB Test Bench

A MATLAB testbench mlhdlc sfir tb exercises the filter design.

open(testbench name);

% Copyright 2011-2019 The MathWorks, Inc.
clear mlhdlc sfir;

T =2;

dt = 0.001;

N = T/dt+1;

sample time = 0:dt:T;

df = 1/dt;
sample freq = linspace(-1/2,1/2,N).*df;

% input signal with noise
_in = cos(2.*pi.*(sample time).*(1l+(sample time).*75)).";

X

% filter coefficients
hl = -0.1339; h2 = -0.0838; h3 = 0.2026; h4 = 0.4064;

len = length(x _in);
y_out = zeros(1,len);
x_out = zeros(1,len);

for ii=1:1len
data = x_in(ii);
% call to the design 'mlhdlc sfir' that is targeted for hardware

3-33



3 Tutorials

[y out(ii), x out(ii)] = mlhdlc sfir(data, hl, h2, h3, h4);
end

figure('Name', [mfilename, ' plot']);
subplot(3,1,1);

plot(1l:len,x in,"'-b");

xlabel('Time (ms)")

ylabel('Amplitude")

title('Input Signal (with noise)')
subplot(3,1,2); plot(1l:len,y out,'-b');
xlabel('Time (ms)")

ylabel('Amplitude")

title('Output Signal (filtered)"')

freq fft = @(x) abs(fftshift(fft(x)));

subplot(3,1,3); semilogy(sample freq,freq fft(x in),'-b');
hold on

semilogy(sample freq,freq fft(y out),'-r")

hold off

xlabel('Frequency (Hz)"')

ylabel('Amplitude (dB)"')

title('Input and Output Signals (Frequency domain)')
legend({'FilterIn', 'FilterOut'}, 'Location', 'South")
axis([-500 500 1 100])

Test the MATLAB Algorithm

To avoid run-time errors, simulate the design by using the test bench.

mlhdlc sfir tb

3-34



Get Started with MATLAB to HDL Workflow

Input Signal (with noise)
e I BT -||-||1-"|'|"| I

Amplitude
=

L] 300 1000 1500 2000 2500
Time (ms)
Output Signal (filtered)

W
E
= 0 el .
5
-1 1 1 N
L] 500 1000 1500 2000 2500
Time (ms)
. Input and Output Signals (Frequency domain)
i} 1{:" T T T T T T T T T E
= ———| filp— 5
g 0l -
210 | Filtarln \ 3
= /-n FiltarOut '.n'ﬁ".l ]
.E. 1{:'.:. I I ” i I 1 1 I {I) I
500 4 300 200 -1 00 L] 100 200 300 400 500

Frequency (Hz)

Create an HDL Coder Project
To create an HDL Coder project:

1. In the MATLAB Editor, in the Apps tab, select HDL Coder. Enter sfir project as Name of the
project.

To create a project from the MATLAB Command Window, run this command:
coder -hdlcoder -new sfir project
Asfir project.prj file is created in the current folder.

2. In the HDL Code Generation pane, in the MATLAB Function section, click Add MATLAB
function and select the FIR filter MATLAB design mlhdlc_sfir. Under the MATLAB Test Bench
section, click Add files and add the MATLAB test bench mlhdlc_sfir_ tb.m.

3. In the HDL Code Generation pane, in the MATLAB Function section, click Autodefine types
and use the recommended types for the MATLAB design. The code generator infers the input types
from the MATLAB test bench.

3-35



3 Tutorials

MATLAB Function (7]

= ) mihdlc_sfir.m

¥_in double(1 x 1)
h_in double(1 x 1)
h_in2 double(1 x 1)
h_in3 double(1 x 1)
h_ind double(1 x 1)

Remove MATLAB function Autodefine types

]

MATLARB Test Bench

“Y) mihdlc_sfir_tb.m

Add files

After specifying your design function and test bench above, use

the Workflow Advisor to generate code.

Workflow Advisor

Run Fixed-Point Conversion and HDL Code Generation

1 Inthe HDL Code Generation pane, click the Workflow Advisor button to start the HDL
Workflow Advisor.

2 Right-click the HDL Code Generation task and select Run to selected task.
The code generator runs the Workflow Advisor tasks to generate HDL code for the filter design.

* Translate your floating-point MATLAB design to a fixed-point design. To examine the generated
fixed-point code from the floating-point design, click the Fixed-Point Conversion task. The
generated fixed-point MATLAB code opens in the MATLAB editor. For details, see “Floating-Point
to Fixed-Point Conversion”.

* Generate HDL code from the fixed-point MATLAB design. By default, HDL Coder generates
VHDL® code. To examine the generated HDL code, click the HDL Code Generation task, and
then click the hyperlink to mlhdlc_sfir fixpt.vhd in the Code Generation Log window. To
generate Verilog® code, in the HDL Code Generation task, select the Target tab, and set
Language to Verilog. For more information and to learn how to specify code generation options,
see “MATLAB to HDL Code and Synthesis”.

3-36



Basic HDL Code Generation and FPGA Synthesis from MATLAB

Basic HDL Code Generation and FPGA Synthesis from MATLAB

This example shows how to create a HDL Coder™ project, generate code for your MATLAB® design,
and synthesize the HDL code. In this example, you:

Create a MATLAB HDL Coder project.

Add the design and test bench files to the project.

Start the HDL Workflow Advisor for the MATLAB design.
Run fixed-point conversion and HDL code generation.
Generate a HDL test bench from the MATLAB test bench.

Verify the generated HDL code by using a HDL simulator. This example uses ModelSim® as the
tool.

O U1 A W N MR

7  Synthesize the generated HDL code by using a synthesis tool. This example uses Xilinx®
Vivado® as the tool.

FIR Filter MATLAB Design

The MATLAB design mlhdlc_sfir is a simple symmetric FIR filter.

design name = 'mlhdlc sfir';
testbench name = 'mlhdlc sfir tb';

Review the MATLAB design.

open(design _name);

Introduction:

% We can reduce the complexity of the FIR filter by leveraging its symmetry.
% Symmetry for an n-tap filter implies, coefficient h0® = coefficient hn-1,
% coefficient, hl = coefficient hn-2, etc. In this case, the number of

% multipliers can be approximately halved. The key is to add the

% two data values that need to be multiplied with the same coefficient

% prior to performing the multiplication.

Key Design pattern covered in this example:
(1) Filter states represented using the persistent variables
(2) Filter coefficients passed in as parameters

% Copyright 2011-2019 The MathWorks, Inc.

s#codegen
function [y out, delayed xout] = mlhdlc sfir(x in,h inl,h in2,h in3,h in4)
% Symmetric FIR Filter

% declare and initialize the delay registers
persistent udl ud2 ud3 ud4 ud5 ud6 ud7 ud8;
if isempty(udl)
udl = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; udé = 0; ud7 = 0; ud8 = 0;

3-37



3 Tutorials

3-38

end

% access the previous value of states/registers
al = udl + ud8; a2 = ud2 + ud7;
a3 = ud3 + ud6; a4 = ud4 + ud5;

% multiplier chain
ml = h_inl * al; m2
m3 = h_in3 * a3; m4

h in2 * a2;
h in4 * a4;

% adder chain
a5 =ml + m2; a6 = m3 + m4;

% filtered output
y out = a5 + a6;

% delayout input signal
delayed xout = ud8;

% update the delay line

ud8 = ud7;
ud7 = ud6;
udé = ud5;
ud5 = ud4;
ud4 = ud3;
ud3 = ud2;
ud2 = udl;
udl = x _in;
end

FIR Filter MATLAB Test Bench

A MATLAB testbench mlhdlc_sfir tb exercises the filter design by using a representative input
range. Review the MATLAB test bench mlhdlc_sfir tb.

open(testbench _name);

000000
676766700

% MATLAB test bench for the FIR filte

0.0.00000000000000000000000000000000
%6%%%% %% %% %% %6 %6 %6%6%6%6%6%6°%6°6°6°6°6°6°6°6°6°6°6°6°6 6%

) ()
"o “6°6

o°
o°
o®
o°
o
o°
o°
o°
o°
o°
o°
o°
o?
o°
o°
o°
o
o°
o°
o?
o°

=

% Copyright 2011-2019 The MathWorks, Inc.
clear mlhdlc sfir;

T = 2;
dt = 0.001;
N = T/dt+1;

sample time = 0:dt:T;

df = 1/dt;
sample freq = linspace(-1/2,1/2,N).*df;

% input signal with noise
_in = cos(2.*pi.*(sample time).*(1l+(sample time).*75)).";

X

% filter coefficients
hl = -0.1339; h2 = -0.0838; h3 = 0.2026; h4 = 0.4064;



Basic HDL Code Generation and FPGA Synthesis from MATLAB

len = length(x _in);
y out = zeros(1,len);
x_out = zeros(1,len);

for ii=1:1len
data = x_in(ii);

% call to the design 'mlhdlc sfir' that is targeted for hardware
[y out(ii), x out(ii)] = mlhdlc sfir(data, hl, h2, h3, h4);

end

figure('Name', [mfilename, ' plot']);
subplot(3,1,1);

plot(1l:len,x in,"'-b");

xlabel('Time (ms)")

ylabel('Amplitude")

title('Input Signal (with noise)')
subplot(3,1,2); plot(1l:len,y out,'-b');
xlabel('Time (ms)")

ylabel('Amplitude")

title('Output Signal (filtered)"')

freq fft = @(x) abs(fftshift(fft(x)));

subplot(3,1,3); semilogy(sample freq,freq fft(x in),'-b');
hold on

semilogy(sample freq,freq fft(y out),'-r'")

hold off

xlabel('Frequency (Hz)"')

ylabel('Amplitude (dB)"')

title('Input and Output Signals (Frequency domain)')
legend({'FilterIn', 'FilterOut'}, 'Location', 'South")
axis([-500 500 1 100])

Test the Original MATLAB Algorithm

To avoid run-time errors, simulate the design by using the test bench.

mlhdlc sfir tb

3-39



3 Tutorials

1
W
E
=2 0r T
E
oL
-1
L] 2500
Time (ms)
Output Signal (filtered)
© 1 T T ]
E
= 0 el .
E
= -1 | 1 1 N
L] 500 1000 1500 2000 2500
Time (ms)
. Input and Output Signals (Frequency domain)
[in] 1{:" T T T T T T T T T E
- - = 1
% f \—"—l—-w_ ]
210 | Filtarln \ 3
5 i /-u FiltarOut 'nn'ﬁ".l
= 1{}:'_'. I I ” i I 1 1 I {I) I
500 4 300 200 -1 00 L] 100 200 300 400 500

Frequency (Hz)

Set Up HDL Simulator and Synthesis Tool Path

If you want to synthesize the generated HDL code, before you use HDL Coder to generate code, set
up your synthesis tool path. To set up the path to your synthesis tool, use the hdlsetuptoolpath
function. For example, if your synthesis tool is Xilinx Vivado:

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath',...
"C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

You must have already installed Xilinx Vivado. To check your Xilinx Vivado synthesis tool setup,
launch the tool by running this command:
lvivado

If you want to simulate the generated HDL code by using a HDL test bench, you can use an HDL
simulator such as ModelSim®. You must have already installed the HDL simulator.

Create an HDL Coder Project
To create an HDL Coder project:

1. Create a project by running this command:

coder -hdlcoder -new sfir project

2. For MATLAB Function, add the MATLAB design mlhdlc sfir. Add mlhdlc sfir tb.m asthe
MATLAB test bench.

3-40



Basic HDL Code Generation and FPGA Synthesis from MATLAB

3. Click Autodefine types and use the recommended types for the MATLAB design. The code
generator infers data types by running the test bench.

MATLAB Eunction (7]

= ) mihdlc_sfir.m

®_in double(1 x 1)
h_in double(1 x 1)
h_ind double(1 x 1)
h_in3 double(1 x 1)
h_ind double(l x 1)

Remove MATLAB function Autodefine types

MATLAB Test Bench (7]

) mihdlc_sfir_tb.m

Add files
After specifying your design function and test bench above, use
the Worlkflow Advizor to generate code.
Workflow Advisor

Create Fixed-Point Versions of Algorithm and Test Bench

1 Click the Workflow Advisor button to open the Workflow Advisor. You see that the Define Input
Types task has passed.

2 Run the Fixed-Point Conversion task. The Fixed-Point Conversion tool opens in the right
pane.

When you run fixed-point conversion, to propose fraction lengths for floating-point data types, HDL
Coder uses the Default word length. In this tutorial, the Default word length is 14. The advisor
provides a default Safety Margin for Simulation Min/Max of 0%. The advisor adjusts the range of
the data by this safety factor. For example, a value of 4 specifies that you want a range of at least 4
percent larger. See also “Floating-Point to Fixed-Point Conversion”.

Select Code Generation Options and Generate HDL Code

Before you generate HDL code, if you want to deploy the code onto a target platform, specify the
synthesis tool. In the Code Generation Target task, leave Workflow to Generic ASIC/FPGA and
specify Xilinx Vivado as the Synthesis Tool. If you don't see the synthesis tool, click Refresh
list. Run this task.

In the HDL Code Generation task, by using the tabs on the right side of this task, you can specify
additional code generation options.

3-41



3 Tutorials

3-42

1 By default, HDL Coder generates VHDL® code. To generate Verilog or SystemVerilog code, in
the Target tab, choose Verilog or SystemVerilog as the Language.

2 To generate a code generation report with comments and traceability links, in the Coding style
tab, select Include MATLAB source code as comments and Generate report.

3 To optimize your design, you can use the distributed pipelining optimization. In the
Optimizations tab, specify 1 for Input pipelining and Output pipelining and then select
Distribute pipeline registers. To learn more, see “Distributed Pipelining”.

4 Click Run to generate Verilog or SystemVerilog code.
Examine the log window and click the links to explore the generated code and the reports.
Generate HDL Test Bench and Simulate the Generated Code

HDL Coder generates a HDL test bench, runs the HDL test bench by using a HDL simulator, and
verifies whether the HDL simulation matches the numerics and latency of the fixed-point MATLAB
simulation.

To generate a HDL test bench and simulate the generated code, in the HDL Verification > Verify
with HDL Test Bench task:

In the Output Settings tab, select Generate HDL test bench.

2 To simulate the generated test bench, set the Simulation Tool to Mode1Sim. You must have
already installed ModelSim.

3 To specify generation of HDL test bench code and test bench data in separate files, in the Test
Bench Options tab, select Multi-file test bench.

4  Click the Run button.

The task generates an HDL test bench, then simulates the fixed-point design by using the selected
simulation tool, and generates a compilation report and a simulation report.

Synthesize Generated HDL Code

HDL Coder synthesizes the HDL code on the target platform and generates area and timing reports
for your design based on the target device that you specify.

To synthesize the generated HDL code:
1. Run the Create project task.

This task creates a Xilinx Vivado synthesis project for the HDL code. HDL Coder uses this project in
the next task to synthesize the design.

2. Select and run the Run Synthesis task.

This task launches the synthesis tool in the background, opens the synthesis project, compiles the
HDL code, synthesizes the design, and generates netlists and area and timing reports.

3. Select and run the Run Implementation task.
This task launches the synthesis tool in the background, runs place and route on the design, and

generates pre- and post-route timing information for use in critical path analysis and back annotation
of your source model.



Generate HDL Code from MATLAB Code Using the Command Line Interface

Generate HDL Code from MATLAB Code Using the Command
Line Interface

This example shows how to use the HDL Coder™ command line interface to generate HDL code from
MATLAB® code, including floating-point to fixed-point conversion and FPGA programming file
generation.

Overview

HDL code generation with the command-line interface has the following basic steps:

Create a fixpt coder config object. (Optional)
Create an hdl coder config object.
Set config object parameters. (Optional)

A W N R

Run the codegen command to generate code.

The HDL Coder command-line interface can use two coder config objects with the codegen command.
The optional fixpt coder config object configures the floating-point to fixed-point conversion of your
MATLAB code. The hdl coder config object configures HDL code generation and FPGA programming
options.

In this example, we explore different ways you can configure your floating-point to fixed-point
conversion and code generation.

The example code implements a discrete-time integrator and its test bench.

Basic Code Generation With Floating-Point to Fixed-Point Conversion

You can generate HDL code and convert the design from floating-point to fixed-point using the default
settings.

You need only your design name, mlhdlc_dti, and test bench name, mlhdlc dti tb:
close all;

% Create a 'fixpt' config with default settings

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'mlhdlc dti tb';

% Create an 'hdl' config with default settings
hdlcfg = coder.config('hdl'); S#ok<NASGU>

After setting up fixpt and hdl config objects, run the following codegen command to perform
floating-point to fixed-point conversion, and generate HDL code.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc dti
If your design already uses fixed-point types and functions, you can skip fixed-point conversion:
hdlcfg = coder.config('hdl'); % Create an 'hdl' config with default settings

hdlcfg.TestBenchName = 'mlhdlc dti tb"';
codegen -config hdlcfg mlhdlc dti

3-43



3 Tutorials

3-44

The rest of this example describes how to configure code generation using the hdl and fixpt
objects.

Create a Floating-Point to Fixed-Point Conversion Config Object

To perform floating-point to fixed-point conversion, you need a fixpt config object.
Create a fixpt config object and specify your test bench name:

close all;

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'mlhdlc dti tb"';

Set Fixed-Point Conversion Type Proposal Options

The code generator can propose fixed-point types based on your choice of either word length or
fraction length. These two options are mutually exclusive.

Base the proposed types on a word length of 24:

fixptcfg.DefaultWordLength = 24;
fixptcfg.ProposeFractionLengthsForDefaultWordLength = true;

Alternatively, you can base the proposed fixed-point types on fraction length. The following code
configures the coder to propose types based on a fraction length of 10:

fixptcfg.DefaultFractionLength = 10;
fixptcfg.ProposeWordLengthsForDefaultFractionLength = true;

Set the Safety Margin

The code generator increases the simulation data range on which it bases its fixed-point type
proposal by the safety margin percentage. For example, the default safety margin is 4, which
increases the simulation data range used for fixed-point type proposal by 4%.

Set the SafetyMargin to 10%:
fixptcfg.SafetyMargin = 10;
Enable Data Logging

The code generator runs the test bench with the design before and after floating-point to fixed-point
conversion. You can enable simulation data logging to plot the quantization effects of the new fixed-
point data types.

Enable data logging in the fixpt config object:
fixptcfg.LogIOForComparisonPlotting = true;
View the Numeric Type Proposal Report

Configure the code generator to launch the type proposal report once the fixed-point types have been
proposed:

fixptcfg.LaunchNumericTypesReport = true;
Create an HDL Code Generation Config Object

To generate code, you must create an hdl config object and set your test bench name:



Generate HDL Code from MATLAB Code Using the Command Line Interface

hdlcfg = coder.config('hdl");
hdlcfg.TestBenchName = 'mlhdlc dti tb"';

Set the Target Language

You can generate VHDL, Verilog or SystemVerilog code. HDL Coder generates VHDL code by default.
To generate Verilog code:

hdlcfg.TargetLanguage = 'Verilog';

Generate HDL Test Bench Code

Generate an HDL test bench from your MATLAB® test bench:
hdlcfg.GenerateHDLTestBench = true;

Simulate the Generated HDL Code Using an HDL Simulator

If you want to simulate your generated HDL code using an HDL simulator, you must also generate the
HDL test bench.

Enable HDL simulation and use the ModelSim simulator:

hdlcfg.SimulateGeneratedCode = true;
hdlcfg.SimulationTool = 'ModelSim'; % or 'ISIM'

Generate an FPGA Programming File

You can generate an FPGA programming file if you have a synthesis tool set up. Enable synthesis,
specify a synthesis tool, and specify an FPGA:

% Enable Synthesis.
hdlcfg.SynthesizeGeneratedCode = true;

% Configure Synthesis tool.

hdlcfg.SynthesisTool = 'Xilinx ISE'; % or 'Altera Quartus II';
hdlcfg.SynthesisToolChipFamily 'Virtex7';
hdlcfg.SynthesisToolDeviceName 'xc7vh580t";
hdlcfg.SynthesisToolPackageName = 'hcgll55';
hdlcfg.SynthesisToolSpeedValue = '-2G';

Run Code Generation

Now that you have your fixpt and hdl config objects set up, run the codegen command to perform
floating-point to fixed-point conversion, generate HDL code, and generate an FPGA programming file:

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc dti

3-45



3 Tutorials

Generate SystemVerilog Code for a MATLAB Function

This example shows how to generate SystemVerilog HDL code for MATLAB® function. SystemVerilog
code has more advanced features over that Verilog® code, such as the use of array ports, package
declarations, structure ports and more.

Examine Algorithm and Test Bench

This example uses a small algorithm that adds two 2-by-2 matrices of type uint8.

design _name = 'systemverilog example';
testbench _name = 'systemverilog example tb';

Open the MATLAB algorithm and test bench.

open(design_name);

function out = systemverilog example(inl, in2)
out = inl + in2;
end

open(testbench _name);

function systemverilog example tb()

inl = uint8([[1 2]; [3 411);

in2 = uint8([[5 6]1; [7 811);

i=1;

while i < 3
out = systemverilog example(inl, in2);
inl = out;

end

end

Create a New HDL Coder Project

To create a new project, enter the following command:
coder -hdlcoder -new systemverilog example prj

Under MATLAB Function, click Add MATLAB Function and select the
systemverilog example.m file. Under MATLAB Test Bench, click Add files and select
systemverilog example tb.m.

For a more complete tutorial on creating and populating MATLAB HDL Coder projects, see “Get
Started with MATLAB to HDL Workflow” on page 3-32.

Run Fixed-Point Conversion and HDL Code Generation

Click Workflow Advisor to launch the Workflow Advisor in MATLAB.
Click HDL Code Generation, set Language property to SystemVerilog.

Right-click the HDL Code Generation task and click Run to selected task to run all the steps
from the beginning through HDL code generation.

3-46



Generate SystemVerilog Code for a MATLAB Function

Examine the generated HDL code by clicking the links in the log window.
Generate SystemVerilog Code Using MATLAB Command Line

You can also generate SystemVerilog code for a MATLAB design by entering commands in MATLAB
Command Window.

First, create a coder.config object hdlcfg.

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'systemverilog example tb';

Set the TargetLanguage Property to SystemVerilog.
hdlcfg.TargetLanguage = 'SystemVerilog';

3. Run code generation.

codegen -config hdlcfg systemverilog example

### Begin SystemVerilog Code Generation

### Working on systemverilog example as <a href="matlab:edit('C:\TEMP\Bdoc24a 2528353 7604\ib462I
### Generating package file <a href="matlab:edit('C:\TEMP\Bdoc24a 2528353 7604\ib462BFE\14\tpc26
### Generating Resource Utilization Report <a href="matlab:hdlcoder.report.openDdg('C:\TEMP\Bdoc:
### Generating HDL Conformance Report <a href="matlab:web('C:\TEMP\Bdoc24a 2528353 7604\1b462BFE
### HDL Conformance check complete with 0 errors, 0 warnings, and 0 messages.

Code generation successful.

See Also

Related Examples
. “Basic HDL Code Generation and FPGA Synthesis from MATLAB” on page 3-37
. “Get Started with MATLAB to HDL Workflow” on page 3-32

3-47



3 Tutorials

Generate SystemVerilog Code for a Simulink Model

This example shows how to generate SystemVerilog HDL code from a Simulink® model.
SystemVerilog code has more advanced features over that Verilog® code, such as the use of array
ports, package declarations, structure ports and more.

Open the Model

Open the SystemVerilogFromSimulink model. The model adds two vector inputs of type uint8
and outputs the result.

mdl 'SystemVerilogFromSimulink"';
dut [mdl '/HDL DUT'];
open_system(mdl);

MNote: This model is configured with 'hdlsetup’

Y

Random
Integer

¥

Random
Integer

HOL_DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then run the following command:
makehdIl{"HDL_DUT")

Generate SystemVerilog Code in Simulink

To generate SystemVerilog code:

1 In the Modeling tab of the Simulink® toolstrip, click Model Settings to open the Configuration
Parameters dialog box.
In the HDL Code Generation pane, set Language to SystemVerilog. Click OK
In Simulink®, in the Apps tab, click HDL Coder.

Select the subsystem for which you want to generate the SystemVerilog code. For the
SystemVerilogFromSimulink model, in the HDL Code tab, set the Code For parameter to
HDL DUT.

5 Generate SystemVerilog code for the HDL DUT subsystem by clicking Generate HDL Code.
Generate SystemVerilog Code from the MATLAB Command Window

You can also generate SystemVerilog code for your design under test (DUT) by using makehdl

function. Run these commands in the MATLAB® Command Window to generate code for HDL DUT
subsystem.

3-48



Generate SystemVerilog Code for a Simulink Model

load system(mdl);
hdlset param(mdl, 'TargetLanguage', 'SystemVerilog');
makehdl(dut)

#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##
#H##

Working on the model <a href="matlab:open system('SystemVerilogFromSimulink')">SystemVerilogl
Generating HDL for <a href="matlab:open system('SystemVerilogFromSimulink/HDL DUT")">SystemV
Using the config set for model <a href="matlab:configset.showParameterGroup('SystemVerilogFr
Running HDL checks on the model 'SystemVerilogFromSimulink'.

Begin compilation of the model 'SystemVerilogFromSimulink'...

Working on the model 'SystemVerilogFromSimulink'...

Working on... <a href="matlab:configset.internal.open('SystemVerilogFromSimulink', 'Generatel
Begin model generation 'gm SystemVerilogFromSimulink'...

Copying DUT to the generated model....

Model generation complete.

Generated model saved at <a href="matlab:open system('hdlsrc\SystemVerilogFromSimulink\gm Sy
Begin SystemVerilog Code Generation for 'SystemVerilogFromSimulink'.

Working on SystemVerilogFromSimulink/HDL DUT as hdlsrc\SystemVerilogFromSimulink\HDL DUT.sv.
Generating package file hdlsrc\SystemVerilogFromSimulink\HDL DUT pkg.sv.

Code Generation for 'SystemVerilogFromSimulink' completed.

Generating HTML files for code generation report at <a href="matlab:hdlcoder. report.openDdg/(
Creating HDL Code Generation Check Report file:///C:/TEMP/Bdoc24a 2528353 7604/ib462BFE/14/t
HDL check for 'SystemVerilogFromSimulink' complete with 0 errors, 0 warnings, and 0 messages
HDL code generation complete.

After the HDL code generation completes, open the generated SystemVerilog files to examine the
generated code for your DUT. The generated SystemVerilog code has vector port declaration for the
DUT interfaces. HDL Coder also generates a package file for the typedef declarations of the DUT
ports.

See Also

Related Examples

L]

“Basic HDL Code Generation and FPGA Synthesis from MATLAB” on page 3-37
“Generate HDL Code from MATLAB Code Using the Command Line Interface” on page 3-43

3-49



3 Tutorials

Generating Modular HDL Code for Functions

This example shows how to generate modular HDL code from MATLAB® code that contains
functions.

By default, HDL Coder™ inlines the body of all MATLAB functions that are called inside the body of
the top-level design function. This inlining results in the generation of a single file that contains the
HDL code for the functions. To generate modular HDL code, use the Generate instantiable code
for functions setting. When you enable this setting, HDL Coder generates a single VHDL® entity or
Verilog® or SystemVerilog module for each function.

LMS Filter MATLAB Design

The MATLAB design used in the example is an implementation of an LMS (Least Mean Squares) filter.
The LMS filter is a class of adaptive filter that identifies an FIR filter signal that is embedded in the
noise. The LMS filter design implementation in MATLAB consists of a top-level function

mlhdlc lms_fcn that calculates the optimal filter coefficients to reduce the difference between the
output signal and the desired signal.

design name = 'mlhdlc lms fcn';
testbench_name = 'mlhdlc_lms fir id tb';

Review the MATLAB design:

open(design name);

0696756567656 %6 %6 5676567676 56766626 566 562626 566 666 566666 566666 566666666 66666 66666 66 666 66666 66666 66

% MATLAB Design: Adaptive Noise Canceler algorithm using Least Mean Square

% (LMS) filter implemented in MATLAB

%

% Key Design pattern covered in this example:

% (1) Use of function calls

% (2) Function inlining vs instantiation knobs available in the coder

% (3) Use of system objects in the testbench to stream test vectors into the design
069676565676 %676 %6 56765676 %6 567656676 566 562626 566666 566666 566666 566666666 66666 66666 66 666 66666 66666 66

s#codegen
function [filtered signal, y, fc] = mlhdlc_lms fcn(input,
desired, step size, reset weights)

"input' : The signal from Exterior Mic which records the ambient noise.
'desired': The signal from Pilot's Mic which includes

original music signal and the noise signal
err_sig': The difference between the 'desired' and the filtered 'input'

It represents the estimated music signal (output of this block)

The LMS filter is trying to retrieve the original music signal('err_sig')
from Pilot's Mic by filtering the Exterior Mic's signal and using it to
cancel the noise in Pilot's Mic. The coefficients/weights of the filter
are updated(adapted) in real-time based on 'input' and 'err_sig'.

0° 0% 0° 0% 0 o° o° o° o° o°

o

s register filter coefficients
persistent filter coeff;
if isempty(filter coeff)

filter coeff = zeros(1l, 40);
end

3-50



Generating Modular HDL Code for Functions

% Variable Filter: Call 'mtapped delay fcn' function on path to create
% 40-step tapped delay
delayed signal = mtapped delay fcn(input);

% Apply filter coefficients
weight applied = delayed signal .* filter coeff;

% Call treesum function on matlab path to sum up the results
filtered signal = mtreesum fcn(weight applied);

% Output estimated Original Signal
td = desired;

tf = filtered signal;

esig = td - tf;

y = esig;

% Update Weights: Call 'update weight fcn' function on MATLAB path to

% calculate the new weights

updated weight = update weight fcn(step size, esig, delayed signal,
filter coeff, reset weights);

% update filter coefficients register
filter coeff = updated weight;
fc = filter coeff;

function y = mtreesum fcn(u)
%sImplement the 'sum' function without a for-loop
% y = sum(u);

The loop based implementation of 'sum' function is not ideal for
HDL generation and results in a longer critical path.

A tree is more efficient as it results in

delay of 1log2(N) instead of a delay of N delay

d° o° o° o°

This implementation shows how to explicitly implement the vector sum in
a tree shape to enable hardware optimizations.

o o°

The ideal way to code this generically for any length of 'u' is to use
recursion but it is not currently supported by MATLAB Coder

o o°

NOTE: To instruct MATLAB Coder to compile an external function,
add the following compilation directive or pragma to the function code
#codegen

° o o°

% This implementation is hardwired for a 40tap filter.

levell = vsum(u);
level2 = vsum(levell);
level3 = vsum(level2);
leveld = vsum(level3);
level5 = vsum(leveld);
level6 = vsum(levelb);
y = level6;

function output = vsum(input)

3-51



3 Tutorials

coder.inline('always');

vt = input(1l:2:end);

for i = int32(1l:numel(input)/2)
k = int32(i*2);
vt(i) = vt(i) + input(k);
end
output = vt;

function tap delay = mtapped delay fcn(input)

The Tapped Delay function delays its input by the specified number
of sample periods, and outputs all the delayed versions in a vector
form. The output includes current input

o° o o°

NOTE: To instruct MATLAB Coder to compile an external function,
add the following compilation directive or pragma to the function code
s#codegen

o o°

persistent u d;
if isempty(u d)

ud = zeros(1,40);
end

ud= [ud(2:40), input];
tap delay = u_d;
function weights = update weight fcn(step size, err sig,
delayed signal, filter coeff, reset weights)
% This function updates the adaptive filter weights based on LMS algorithm
% Copyright 2007-2022 The MathWorks, Inc.
OTE: To instruct MATLAB Coder to compile an external function,

N
add the following compilation directive or pragma to the function code
#codegen

d° o o°

step sig = step size .* err_sig;
correction factor = delayed signal .* step sig;
updated weight = correction factor + filter coeff;

if reset weights

weights = zeros(1,40);
else

weights = updated weight;
end

The MATLAB function is modular and uses functions:

+ mtapped delay fcn to calculate delayed versions of the input signal in vector form.

+ mtreesum fcn to calculate the sum of the applied weights in a tree structure. The individual sum
is calculated by using a vsum function.

3-52



Generating Modular HDL Code for Functions

+ update weight fcn to calculate the updated filter weights based on the least mean square
algorithm.

LMS Filter MATLAB Test Bench

Review the MATLAB test bench:

open(testbench _name);

clear ('mlhdlc lms fcn');

% returns an adaptive FIR filter System object, HLMS, that computes the

% filtered output, filter error, and the filter weights for a given input
% and desired signal using the Least MeanSquares (LMS) algorithm.

% Copyright 2011-2022 The MathWorks, Inc.

stepSize = 0.01;
reset weights =false;

hfilt = dsp.FIRFilter;
hfilt.Numerator = firl(10, .25);

o°

System to be identified

rng('default');
X = randn(1000,1);
d = step(hfilt, x) + 0.01*randn(1000,1);

always default to known state
input signal
desired signal

o® o° o°

hSrc = dsp.SignalSource(x);
hDesiredSrc = dsp.SignalSource(d);

dsp.SignalSink;
dsp.SignalSink;

©.0.0.0.0.0.0.0.0.0.0.0.00.0.0.0.0.0.0.0.0.0.0.0.0.0.0
000700000000 0000000000 0000000
%Call to the design
©.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
00000000000 0000000000 0000000
while (~isDone(hSrc))
[y, e, w] = mlhdlc_lms fcn(step(hSrc), step(hDesiredSrc),
tepSize, reset weights);

step(hOut, vy
step(hErr, e

——Wn0n

’
’
end

figure('Name', [mfilename, ' plot']);

subplot(2,1,1), plot(1:1000, [d,hOut.Buffer,hErr.Buffer]);
title('System Identification of an FIR filter');
legend('Desired', 'Output', 'Error');

xlabel('time index'); ylabel('signal value');
subplot(2,1,2); stem([hfilt.Numerator.', w(end-10:end)."']);
legend('Actual', 'Estimated');

xlabel('coefficient #'); ylabel('coefficient value');

Test the MATLAB Algorithm

To avoid run-time errors, simulate the design with the test bench.

mlhdlc lms fir id tb

3-53



3 Tutorials

3-54

System ldentification of an FIR filter

2 T T T T T T T T T
| Desined
L Output | |
1
g k l I 1 , Error ||
'-'_}U EI (l" |r klu'l ﬂ.“Jr[.l || ||| Jl'I \ II il L'IJIil‘l'l F ”III"-’ \FF | |h lh'lw
m {JHv? | ) ‘ vy
U N, u Wl
[15]
=1
_2 1 1 i 1 1 1 1 1 1
0 100 200 300 400 500 GO0 00 800 ano 1000
fime index
DS T T T T T T T T T
Q —o Actual
5 '\':' f_‘;. —) Estimated
Dp2r 5
=
a
i {
E 01F h
]
[}
L = :F e
1 2 3 4 ] L& 7 & g 10 11
coefficient #

Create an HDL Coder Project

To generate HDL code from a MATLAB design:
1. Create a HDL Coder project:

coder -hdlcoder -new mlhdlc fcn partition

2. Add the file mlthdlc_1lms_fcn.m to the project as the MATLAB Function and
mlhdlc lms fir id tb.m as the MATLAB Test Bench.

3. Click Autodefine types to use the recommended types for the inputs and outputs of the MATLAB
function mlhdlc_lms_ fcn.

Refer to “Get Started with MATLAB to HDL Workflow” on page 3-32 for a more complete tutorial on
creating and populating MATLAB HDL Coder projects.



Generating Modular HDL Code for Functions

| HDL Code Generation |

milhdlc_fon_partition.prj v 5 G-
Entry Points Build
MATLAB Function L7

= ﬁ"_hl mlhdlc_lms_fen.m

einput <Undefined=
-~ desired <Undefined>
é""step_size <Undefined=
E""reset_weights <Undefined=

[Eemove MATLAR Function]

MATLAB Test Bench (7]

28] mihdlc_Ims fir_id_tb.m
[Remove MATLAB Test Bench]

Run Fixed-Point Conversion and HDL Code Generation

1 (Click the Workflow Advisor button to start the Workflow Advisor.
2 Right click the HDL Code Generation task and select Run to selected task.

A single HDL file mlhdlc_lms fcn FixPt.vhd is generated for the MATLAB design. The VHDL
code for all functions in the MATLAB design is inlined into this file.

Generate Instantiable HDL Code

1 In the Advanced tab, select the Generate instantiable code for functions check box.
2  Click the Run button to rerun the HDL Code Generation task.

You see multiple HDL files that contain the generated code for the top-level function and the
functions that are called inside the top-level function. See also “Generate Instantiable Code for
Functions”.

Control Inlining For Each Function

In some cases, you may want to inline the HDL code for helper functions and utilities and then
instantiate them. To locally control inlining of such functions, use the coder.inline pragma in the
MATLAB code.

To inline a function in the generated code, place this directive inside that function:
coder.inline('always")

To prevent inlining of a function in the generated code, place this directive inside that function:
coder.inline('never')

To let the code generator determine whether to inline a function in the generated code, place this
directive inside that function:

3-55



3 Tutorials

coder.inline('default"')

To learn how to use coder.inline pragma, enter:
help coder.inline
Limitations for Instantiating HDL Code from Functions

» Function calls inside conditional expressions and for loops are inlined and are not instantiated.
* Functions with states are inlined.

3-56



	About HDL Coder
	HDL Coder Product Description
	HDL Language Support and Supported Third-Party Tools and Hardware
	VHDL, Verilog, and SystemC Language Support
	Third-Party Synthesis Tools and Version Support
	FPGA-in-the-Loop Hardware
	Generic ASIC/FPGA Hardware
	IP Core Generation Hardware
	Simulink Real-Time FPGA I/O: Speedgoat Target Computer


	Getting Started with HDL Coder
	Tool Setup
	Synthesis Tool Path Setup
	HDL Simulator Setup
	Xilinx System Generator Setup for ModelSim Simulation
	Altera DSP Builder Setup
	FPGA Simulation Library Setup
	C/C++ Compiler Setup


	Tutorials
	Basic HDL Code Generation Workflow
	Develop MATLAB or Simulink Design
	Set Up HDL Coder Project
	Check HDL Compatibility with HDL Code Advisor
	Generate HDL Code
	Verify Generated HDL Code
	Deploy Generated Code to Target Hardware
	Optimize Design for Speed and Area

	Create HDL-Compatible Simulink Model
	Use Blank DUT Template
	Choose Blocks from HDL Coder Library
	Develop Algorithm for DUT
	Create Test Bench for Design
	Simple Counter Model
	Simulate and Verify Design Functionality
	Generate HDL Code from Simulink Model

	Generate HDL Code from Simulink Model
	Model Templates for HDL Code Generation
	Simple Counter Model
	Generate HDL Code
	View HDL Code Generation Files
	Inspect Generated HDL Code
	Validate HDL Behavior Using Validation Model
	Verify Generated HDL Code

	Verify Generated HDL Code from Simulink Model
	What is an HDL Test Bench?
	Simple Counter Model
	Verification Methods
	Generate HDL Test Bench
	View HDL Test Bench Files
	Run Simulation and Verify Generated HDL Code
	Deploy Generated HDL Code on Target Device

	HDL Code Generation and FPGA Synthesis from Simulink Model
	Simulink HDL Workflow Advisor
	Simple Counter Model
	Set Up Tool Path
	Open the HDL Workflow Advisor
	Generate HDL Code
	Perform FPGA Synthesis and Analysis
	Run Workflow at Command Line with a Script

	Generation of Clock Bundle Signals in HDL Coder
	MATLAB Code and Clock Relationship
	Simulink Model and Clock Relationship

	Get Started with MATLAB to HDL Workflow
	Basic HDL Code Generation and FPGA Synthesis from MATLAB
	Generate HDL Code from MATLAB Code Using the Command Line Interface
	Generate SystemVerilog Code for a MATLAB Function
	Generate SystemVerilog Code for a Simulink Model
	Generating Modular HDL Code for Functions


